
2/17/2014

1

A Detailed GPU Cache

Model Based on Reuse

Distance Theory

Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal

Eindhoven University of Technology (Netherlands)

Henri Bal

Vrije Universiteit Amsterdam (Netherlands)

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 2

Why caches for GPUs?

Isn’t the GPU hiding memory latency through parallelism?

Why bother with caches at all?

● Lots of GPU programs are memory bandwidth bound (e.g. 18 out 31

for Parboil)

● 25% hits in the cache 25% ‘extra’ off-chip memory bandwidth

 up to 25% improved performance

2/17/2014

2

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 3

Why caches for GPUs?

This work focuses on the L1 data-caches only:

• Finding the order of requests to the L1 is the main challenge

• Existing multi-core CPU models can be re-used to get a L2 model

Modelling NVIDIA GPUs: L1 caches only reads

Isn’t the GPU hiding memory latency through parallelism?

Why bother with caches at all?

● Lots of GPU programs are memory bandwidth bound (e.g. 18 out 31

for Parboil)

● 25% hits in the cache 25% ‘extra’ off-chip memory bandwidth

 up to 25% improved performance

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 4

A cache model for GPUs

A (proper) GPU cache model does not exist yet. Why?

But how to find the order of requests?
 X Hierarchy of threads, warps, threadblocks

✓ Normal cache structure (lines, sets, ways)

✓ Typical hierarchy (per core L1, shared L2)

 X A single thread processes loads/stores in-order,

 but multiple threads can diverge w.r.t. each other

instr. 2

instr. 4

instr. 5

2/17/2014

3

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 5

But what can it be used for?

Examples of using the cache model:

A cache model can give:

1. A prediction of the amount of misses

2. Insight into the types of misses (e.g. compulsory, capacity, conflict)

● A processor architect can perform design

space exploration based on the cache

model’s parameters (e.g. associativity)

● An optimising compiler (e.g. PPCG) can

apply loop-tiling based on a feedback-loop

with a cache model

● A GPU programmer can identify the amount

and types of cache misses, guiding him

through the optimisation space

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 6

Background: reuse distance theory

Example of reuse distance theory:

• For sequential processors

• At address or at cache-line granularity

address ‘9’ in between

addresses ‘9’ and ‘3’ in between

time

2/17/2014

4

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 7

Background: reuse distance theory

Example of reuse distance theory:

• For sequential processors

• At address or at cache-line (e.g. 4 items) granularity

(in
te

g
e
r d

iv
id

e
 b

y 4
)

cache line ‘1’ in between

time

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 8

Background: reuse distance theory

Example of reuse distance theory:

• For sequential processors

• At address or at cache-line (e.g. 4 items) granularity

(at cache-line granularity)

example cache

with 2 cache-lines

3 compulsory misses (42%)

1 capacity

miss (14%)

time

2/17/2014

5

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 9

Extensions to reuse distance theory

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 10

1. Parallel execution model

Sequentialised GPU execution example:

• 1 thread per warp, 1 core

• 4 threads, each 2 loads: x[2*tid] and x[2*tid+1]

• Cache-line size of 4 elements

• Assume round-robin scheduling for now time

(in
te

g
e
r d

iv
id

e
 b

y 4
)

0%

25%

50%

75%

0 1 2 ∞

fr
e
q

u
e
n

c
y

reuse distance

2/17/2014

6

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 11

1. Parallel execution model

Sequentialised GPU execution example:

• 1 thread per warp, 1 core

• 4 threads, each 2 loads: x[2*tid] and x[2*tid+1]

• Cache-line size of 4 elements

• Assume round-robin scheduling for now time

(in
te

g
e
r d

iv
id

e
 b

y 4
)

0%

25%

50%

75%

0 1 2 ∞
fr

e
q

u
e
n

c
y

reuse distance

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 12

1. Parallel execution model

Sequentialised GPU execution example:

• 1 thread per warp, 1 core

• 4 threads, each 2 loads: x[2*tid] and x[2*tid+1]

• Cache-line size of 4 elements

• Assume round-robin scheduling for now time

(in
te

g
e
r d

iv
id

e
 b

y 4
)

0%

25%

50%

75%

0 1 2 ∞

fr
e
q

u
e
n

c
y

reuse distance

2/17/2014

7

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 13

1. Parallel execution model

But is this the correct order?

2. What about memory latencies and thread divergence?

3. And isn’t there a maximum number of outstanding requests?

4. And did we handle cache associativity yet?

And how to handle warps, threadblocks, sets of active

threads, multiple cores/SMs, etc?

• Implemented in the model (see paper for details)

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 14

2. Memory latencies

• 4 threads, each 2 loads: x[2*tid] and x[2*tid+1]

• Cache-line size of 4 elements

• Fixed latency of 2 `time-stamps’

as before

Note: Extra ‘compulsory’ misses are called latency misses

0%

25%

50%

75%

0 1 2 ∞

fr
e
q

u
e
n

c
y

reuse distance

2/17/2014

8

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 15

2. Memory latencies

Adding memory latencies changes reuse distances...

• ... and thus the cache miss rate

• But are the latencies fixed?

• And what values do they have?

• Note: ‘time-stamps’ not real time

Use different values for

hit / miss latencies

minimum

latency

half-normal

distribution p
ro

b
a
b
ili

ty

0 latency

Most hit/miss behaviour (the ‘trend’) is already captured by:
• Introducing miss latencies

• Introducing a distribution

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 16

2. Memory latencies

• 4 threads, each 2 loads: x[2*tid] and x[2*tid+1]

• Cache-line size of 4 elements

• Variable latency of 2 (misses) and 0 (hits)

0%

25%

50%

75%

0 1 2 ∞

fr
e
q

u
e
n

c
y

reuse distance

2/17/2014

9

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 17

3. MSHRs

MSHRs hold information on in-flight memory requests

• MSHR size determines maximum number of in-flight requests

• GPU micro-benchmarking number of MSHRs per core

MSHR: miss status holding register

• Conclusion: 64 MSHRs per core

4*16 = 64

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 18

3. MSHRs

• 2 out of the 4 threads, each 2 loads: x[2*tid] and x[2*tid+1]

• Cache-line size of 4 elements

• Only 1 MSHR postponed

2/17/2014

10

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 19

4. Cache associativity

Associativity might introduce conflict misses

• Create a private reuse distance stack per set

• Hashing function determines mapping of addresses to sets

• GPU micro-benchmarking identify hashing function

(bits of the byte address)

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 20

Implementation

Model (source-code) available at:

http://github.com/cnugteren/gpu-cache-model

profiler

https://github.com/CNugteren/gpu-cache-model
https://github.com/CNugteren/gpu-cache-model
https://github.com/CNugteren/gpu-cache-model
https://github.com/CNugteren/gpu-cache-model
https://github.com/CNugteren/gpu-cache-model
https://github.com/CNugteren/gpu-cache-model

2/17/2014

11

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 21

Experimental set-up

Two entire CUDA benchmark suites:

• Parboil

• PolyBench/GPU

NVIDIA GeForce GTX470 GPU with two configurations:

• 16KB L1 caches (results in presentation)

• 48KB L1 caches

 Four types of misses identified:

• Compulsory (cold misses)

• Capacity (cache size not finite)

• Associativity (set conflicts)

• Latency (outstanding requests)

Compared against hardware counters using the profiler

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 22

Verification results: example

Compared with hardware counters using the profiler (right)

Four types of misses modelled (left):

• Compulsory (cold misses)

• Capacity (cache size not finite)

• Associativity (set conflicts)

• Latency (outstanding requests)

example

kernel

none

for this

kernel Black number:
● 53% cache misses predicted

● 52% cache misses measured on hardware

● (not including latency misses:

not measured by the profiler)

2/17/2014

12

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 23

Verification results (1/3)

Note: matching numbers good accuracy of the cache model

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 24

Verification results (2/3)

Note: matching numbers good accuracy of the cache model

2/17/2014

13

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 25

Verification results (3/3)

Note: matching numbers good accuracy of the cache model

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 26

Are these results ‘good’?

Compared with the GPGPU-Sim simulator

• Lower running time: from hours to minutes/seconds

• Arithmetic mean absolute error: 6.4% (model) versus 18.1% (simulator)

• Visualised as a histogram:

example

kernel

|53% - 52%| = 1%

+1 @ 1%

2/17/2014

14

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 27

Did we really need so much detail?

Full model: 6.4% error

No associativity modelling: 9.6% error

No latency modelling: 12.1% error

No MSHR modelling: 7.1% error

arithmetic mean absolute error

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 28

Design space exploration

Cache parameters:

• Associativity

 1-way → 16 way

• Cache size

 4KB → 64KB

• Cache line size

 32B → 512B

• # MSHR

 16 → 256

2/17/2014

15

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 29

Summary

GPU cache model based on reuse distance theory

minimum

latency

half-normal

distribution

p
ro

b
a
b
ili

ty

0 latency

Parallel execution model Memory latencies

MSHR Cache associativity

Mean absolute error of 6.4%

HPCA-20 | GPU Cache Model | Gert-Jan van den Braak | February 2014 30

Questions

