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Abstract. This paper presents a technique to fully automatically gen-
erate efficient and readable code for parallel processors. We base our
approach on skeleton-based compilation and ‘algorithmic species’, an al-
gorithm classification of program code. We use a tool to automatically
annotate C code with species information where possible. The anno-
tated program code is subsequently fed into the skeleton-based source-to-
source compiler ‘Bones’, which generates OpenMP, OpenCL or CUDA
code and optimises host-accelerator transfers. This results in a unique
approach, integrating a skeleton-based compiler for the first time into
an automated flow. We demonstrate the benefits of our approach on the
PolyBench suite by showing average speed-ups of 1.4x and 1.6x for GPU
code compared to ppcg and Par4All, two state-of-the-art compilers.

Keywords: Parallel Programming, Algorithm Classification, Algorithmic Skele-
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1 Introduction

The past decades of processor design have led to an increasingly heterogeneous
computing environment, in which multi-core CPUs are used in conjunction with
accelerators such as graphics processing units (GPUs). Both parallelism and
heterogeneity have made programming a challenging task: programmers are
faced with a variety of new parallel languages and are required to have de-
tailed architectural knowledge to fully optimise their applications. Apart from
programming, maintainability, portability in general, and performance porta-
bility in particular have become issues of major importance. Despite a sig-
nificant amount of work on compilation, auto-parallelisation and auto-tuning
(e.g. [2, 6, 7, 11, 13, 21, 22, 23]), many programmers are still struggling with
these issues, having to deal with low-level languages such as OpenCL and CUDA.

Existing compilers for parallel targets fall short in at least one of the fol-
lowing areas: 1) they are not fully automatic and require code restructuring or
annotations, 2), they directly produce binaries or generate human unreadable
code, or 3), they do not generate efficient code. The first shortcoming mostly
affects application programmers who are unfamiliar with parallel architectures
and concurrent programming, while the second shortcoming mostly affects savvy



programmers who are leveraging compilers to perform the initial parallelisation
and are willing to further optimise the resulting code. The third shortcoming
affects all types of users. The goal of this work is to address these shortcom-
ings. We take a unique approach: we use an algorithm classification to drive a
source-to-source compiler based on algorithmic skeletons.

In this work we present a technique to automatically generate efficient and
readable parallel code for parallel architectures (with a focus on GPUs). We
base this technique on ‘algorithmic species’ [16, 17], an algorithm classification
of program code based on the polyhedral model [8]. Algorithmic species encap-
sulate information such as data re-use and memory access patterns. Algorithmic
species form the backbone of our approach (see Fig. 1), which includes a tool
to automatically extract species from static affine loops (aset) and a source-to-
source compiler based on skeletons (Bones). The contributions of this work are
summarised as follows:

– We present a unique integration of a skeleton-based compiler (Bones) with
an algorithm classification (algorithmic species) in Sect. 3. With this combi-
nation, skeleton-based compilers can be used in fully-automatic compilation
flows, as they no longer require manual identification of skeletons.

– We optimise host-accelerator transfers (e.g. CPU-GPU) in aset and extend
Bones as presented in [15] with new targets, skeletons and optimisations, in-
cluding register caching, thread coarsening, and zero-copy transfers (Sect. 4).

– We discuss and demonstrate the benefits of our unique approach (Sect. 5) by
generating OpenMP, OpenCL and CUDA code for the PolyBench benchmark
suite. We focus on the CUDA target, for which we show a speed-up compared
to two state-of-the-art polyhedral compilers for individual kernels (1.4x and
1.6x on average) and for complete benchmarks (1.2x and 3.0x on average).
Additionally, we demonstrate the importance of host-accelerator transfer
optimisations (1.8x speed-up on average).

Fig. 1. Overview of the approach taken in this work.

2 Related Work

There is a large body of work targeted at (partially) automating parallel pro-
gramming (e.g. [1, 2, 6, 7, 11, 13, 15, 21, 22, 23]). However, existing work target-
ing code generation for OpenMP, OpenCL or CUDA often requires annotations
in the form of directives [6, 11, 15, 23] or requires major code restructuring [7, 21].
Furthermore, they often produce human unreadable source code for further op-
timisations [6, 23] or no modifiable source code at all [7]. Exceptions are the



polyhedral-based compilers Par4All [1] and ppcg [22] that are able to fully-
automatically compile sequential code into readable parallel code. We compare
our approach in terms of performance with these state-of-the-art compilers for
CUDA in Sect. 5. Par4All [1] is based on the theory of convex array regions and
is implemented using the PIPS source-to-source compiler. ppcg [22] is an opti-
mising polyhedral compiler based on PET and ISL. Both Par4All and ppcg

are able to perform host-accelerator (e.g. CPU-GPU) transfer optimisations.
Among the large amounts of existing algorithm classifications (e.g. [4, 7]),

we identify only one classification, named idioms [18], that provides a tool to
perform automatic extraction of classes from source code. However, only six basic
classes are provided (stream, transpose, gather, scatter, reduction and stencil),
resulting in a significantly lower amount of detail compared to algorithmic species
and aset’s automatic extraction.

3 Combining Skeletons with Algorithmic Species

In our two-step approach (see Fig. 1), the first step is to extract relevant informa-
tion from source code. This information is encapsulated in the form of algorith-

mic species1 [16, 17]: an algorithm classification based on polyhedral analysis [8].
In this section, we first briefly provide background on algorithmic species and
algorithmic skeletons. Following, we discuss the combination of skeleton-based
compilation with algorithmic species. Finally, we illustrate the integration of
skeleton-based compilation and species by discussing example skeletons.

3.1 Classifying Code using Algorithmic Species

We illustrate algorithmic species by showing an example: matrix-vector multi-
plication r = M · s (see Listing 1). To produce a single element of the result
r, we need a complete row from matrix M and the entire vector s. In terms of
access patterns used to build algorithmic species, we name the row access from
M a chunk access. The vector s is needed entirely to calculate a single element
of the result r, which we characterise with the full pattern. The final algorithmic
species is shown in line 1 of Listing 1, including array names and access ranges.

Listing 1. Matrix-vector multiplication classified using algorithmic species.

1 M[ 0 : 1 2 7 , 0 : 6 3 ] | chunk (− ,0 :63) ∧ s [ 0 : 6 3 ] | f u l l → r [ 0 : 1 2 7 ] | element
2 for ( i =0; i <128; i++) {
3 r [ i ] = 0 ;
4 for ( j =0; j <64; j++) {
5 r [ i ] += M[ i ] [ j ] ∗ s [ j ] ;
6 }
7 }

The example covers three access patterns, forming a single species when com-
bined. In total, five patterns (element, neighbourhood, chunk, full, and shared)
can be combined into an unlimited amount of different species. Species and their

1 Species is both the English plural and singular form.



patterns are defined formally based on the polyhedral model. Since the patterns
are descriptive and intuitive, they may be derived from source code by hand in
certain cases. However, to ease the work of a programmer, to avoid mistakes, and
to be able to automatically generate parallel code, species are derived automat-
ically using aset, an algorithmic species extraction tool [5]2. We make a note
that this tool merely identifies species in source code, it does not perform any
transformations to extract (more) parallelism from the code. Therefore, our two-
step approach could be combined with existing parallelising compilers (e.g. [19]),
which can be seen as additional pre-processing.

3.2 Compilation Based on Algorithmic Skeletons

Algorithmic skeletons [4] is a technique that uses parametrisable program code,
known as skeletons or skeleton implementations. An individual skeleton can be
seen as template code for a specific class of computations on a specific processor.
Users of previous skeleton-based compilers were required to select a skeleton
suitable for their algorithm and target processor by hand, and could subsequently
invoke the skeleton to generate program code for the target processor. If no
skeleton implementation was available for the specific class or processor, it could
be added manually. Future algorithms of the same class could then benefit from
re-use of the skeleton code. Benefits of skeleton-based compilation are among
others the flexibility to extend to other targets, and the performance potential:
optimisations can be performed in the native language within the skeletons.
Examples of recent skeleton-based compilers are [3, 7, 15, 21].

3.3 From Species to Skeletons

In contrast to existing skeleton-based compilers, we use algorithmic species in-
formation to select a suitable skeleton. This does not only enable automation
of the whole tool-chain, but also overcomes common critique for skeleton-based
compilers illustrated by questions such as ‘how difficult is it to select a suitable
skeleton’ or ‘what if the user selects an incompatible skeleton’.

We modified the Bones skeleton-based source-to-source compiler [15] to
be combined with algorithmic species. The compiler takes C code annotated
with species information as an input. The algorithmic species (extracted by a
pre-processor) are used directly to determine the skeleton to use. Additionally,
they are used to enable/disable additional transformations and optimisations,
although most optimisations can be made within the skeletons themselves.

Algorithmic species map one-to-one to skeletons: the compiler needs to sup-
ply a skeleton for every species it wants to support. These skeletons should
be constructed in such a way that they are correct (and preferably optimised)
for all algorithms belonging to a given species. For practical reasons however (to
save work/code duplication), we provide a species-to-skeleton mapping, such that

2
aset can be replaced by the more recent a-darwin tool [16].



multiple species can map to the same skeleton. For example, for a GPU target, al-
gorithmic species of the form ‘neighbourhood → element’ and ‘neighbourhood
∧ element → element’ both map to a single skeleton that enables explicit
caching of the neighbourhood in the GPU’s scratchpad memory.

We illustrate the working of Bones through Fig. 2. In this figure, we show
an example input with two loop nests identified as two different species (‘species
X’ and ‘species Y’ in the figure). The compiler first loads and invokes the corre-
sponding skeletons for a given target. Then, the skeleton-specific transformations
are performed, and finally, Bones combines the results to obtain target code.
The optimisations as described in Sect. 4 are performed in the last stage.

Fig. 2. Illustration of the structure of the Bones compiler for an example input with
two different species.

3.4 Example Skeletons

To illustrate the use of skeletons within Bones, we first show a simplified
OpenMP skeleton in Listing 2 and its instantiation for the matrix-vector mul-
tiplication example (Listing 1) in Listing 3. The skeleton in Listing 2 shows
highlighted keywords, which are filled in as follows: parallelism represents the
parallelism found in the species, ids computes the identifier corresponding to
the current iteration, and code fills in the transformed code. For illustration pur-
poses, the example skeleton is heavily simplified, excluding comments, boundary
and initialisation code, function calls and definitions, and makes several assump-
tions, such as the divisibility of the amount of parallelism by the thread count.

Additionally, we show an example of a skeleton for the CUDA target in List-
ing 4. This skeleton is specific to species of the form ‘0:N,0:N|chunk(-,0:N) →
0:N,0:N|element’, similar to the matrix-vector multiplication kernel shown in
Listing 1. A naive mapping to CUDA will result in uncoalesced accesses to the
chunk array (M in the example): subsequent accesses will be made by the same



Listing 2. A simplified skeleton for
OpenMP. Details are left out for clarity.

1 int count ;
2 count = omp get num procs ( ) ;
3 omp set num threads ( count ) ;
4 #pragma omp p a r a l l e l
5 {
6 int t id , i ;
7 int work , s ta r t , end ;
8 t i d = omp get thread num () ;
9 work = <pa ra l l e l i sm >/count ;

10 s t a r t = t i d ∗work ;
11 end = ( t i d +1)∗work ;
12
13 // Star t the p a r a l l e l work
14 for ( i=s t a r t ; i<end ; i++) {
15 <ids>

16 <code>

17
18
19
20 }

Listing 3. Instantiated code for the List-
ing 1 example. Optimisations are omitted.

1 int count ;
2 count = omp get num procs ( ) ;
3 omp set num threads ( count ) ;
4 #pragma omp p a r a l l e l
5 {
6 int t id , i ;
7 int work , s ta r t , end ;
8 t i d = omp get thread num () ;
9 work = 128/ count ;

10 s t a r t = t i d ∗work ;
11 end = ( t i d +1)∗work ;
12
13 // Star t the p a r a l l e l work
14 for ( i=s t a r t ; i<end ; i++) {
15 int gid = i ;
16 r [ g id ] = 0 ;
17 for ( j =0; j <128; j++)
18 r [ g id ] += M[ gid ] [ j ]∗ s [ j ] ;
19 }
20 }

thread. To re-enable coalescing in these cases, which is paramount for perfor-
mance, a special skeleton with a pre-shuffling kernel is designed. The skeleton in
Listing 4 shows a kernel for the actual work (lines 1-8) and a kernel to reorder
the input array by re-arranging data in the on-chip memory of the GPU (lines 9-
20). The use of this skeleton implies a transformation in the original code as well
(e.g. from M[i][j] into M[j][i]), which is handled by the compiler. Again, this
skeleton is heavily simplified for illustration purposes, e.g. not showing boundary
checks nor the host code to launch the kernels.

Listing 4. A simplified skeleton for the CUDA target to enable coalesced accesses.

1 // CUDA kerne l for the ac tua l work ( s imp l i f i e d )
2 g l o b a l void kerne l 0 ( . . . ) {
3 int gid = blockIdx . x∗blockDim . x+threadIdx . x ;
4 i f ( g id < <pa ra l l e l i sm >) {
5 <ids>

6 <code>

7 }
8 }
9 // CUDA kerne l for pre−s h u f f l i n g ( s imp l i f i e d )

10 g l o b a l void kerne l 1 ( . . . ) {
11 int tx = threadIdx . x ; int ty = threadIdx . y ;
12 s h a r e d <type> b [ 1 6 ] [ 1 6 ] ;
13 int gid0 = blockIdx . x∗blockDim . x + tx ;
14 int gid1 = blockIdx . y∗blockDim . y + ty ;
15 int nid0 = blockIdx . y∗blockDim . y + tx ;
16 int nid1 = blockIdx . x∗blockDim . x + ty ;
17 b [ ty ] [ tx ] = in [ g id0 + gid1 ∗<dims>/<params > ] ;
18 sync th r ead s ( ) ;
19 out [ nid0 + nid1∗<params>] = b [ tx ] [ ty ] ;
20 }



4 Compiler Optimisations

In this section we discuss the host-accelerator transfer optimisations made by
aset and Bones, and illustrate some of the optimisations possible within Bones.
The discussed optimisations in this section are new to Bones: they are not
present in earlier non-species based versions [15]. Both aset, and Bones are
open-source and are freely available3. The compiler Bones is programmed in
Ruby and uses the C-to-AST module CAST4. Bones currently supplies a total
of 15 skeletons for 5 different targets: OpenMP for CPUs, CUDA for NVIDIA
GPUs, OpenCL for AMD GPUs, and OpenCL for CPUs (AMD and Intel SDK).

4.1 Host-Accelerator Transfer Optimisations

Many of today’s parallel processors are designed as an accelerator : they require
a host processor to dispatch tasks (or: kernels). Furthermore, they often have a
separate memory (e.g. GPUs, Intel MIC), requiring host-accelerator transfers of
input and output arrays. When executing multiple kernels, this gives opportu-
nities to optimise these transfers in several ways [10, 12]: 1) transfers might be
omitted (e.g. subsequent kernels use the same data), 2) transfers can run in par-
allel with host code (e.g. start the copy-in as soon as the data is ready), and 3)
transfers unrelated to a specific kernel can run in parallel with kernel execution.

We perform such optimisations within aset. After delimiting the identified
algorithmic species by pragma’s, aset is instructed to: 1) mark inputs and out-
puts as copy-ins and copy-outs for the current kernel, and 2) add synchronisation
barriers after the transfers. Bones then generates a second host thread, receiving
transfer requests and performing synchronisations. An example of non-optimised
output is shown in the form of pseudo code in Listing 5, in which each copy-in
and copy-out implies that it is allowed to start the copy at that specific point,
and must be finished before the given deadline (see also Fig. 3).

After producing the non-optimised form (e.g. Listing 5), the tool performs
different types of optimisations in an iterative way, including: 1) copy-ins directly
after copy-outs are removed (e.g. from Listing 5 to Listing 6), 2) copy-ins are
moved to the front if the data is not written by the previous species, 3) deadlines
of copy-outs are increased if the data is not written by the next species (e.g.
from Listing 6 to Listing 7), 4) unused synchronisation barriers are omitted, and
5) transfers are moved to an outer loop if possible. The effects of the transfer
optimisations are discussed in Sect. 5.

4.2 Optimisations within Bones

The compiler Bones performs various optimisations to the source code before
it instantiates a skeleton. Most optimisations are conditionally applied based on
the algorithmic species. For example, array indices and the corresponding array

3
Bones and aset can be found at: http://parse.ele.tue.nl/species/.

4 CAST can be found at http://cast.rubyforge.org/.



Listing 5. Transfer exam-
ple (original).

1 copy−in (A, 1 )
2 sync (1 )
3 ke rne l : B ← A
4 copy−out (B, 2 )
5 sync (2 )
6 copy−in (B, 3 )
7 sync (3 )
8 ke rne l : C ← B
9 copy−out (C, 4 )

10 sync (4 )

Listing 6. Transfer exam-
ple (partly optimised).

1 copy−in (A, 1 )
2 sync (1 )
3 ke rne l : B ← A
4 copy−out (B, 2 )
5 sync (2 )
6 ke rne l : C ← B
7 copy−out (C, 4 )
8 sync (4 )

Listing 7. Transfer exam-
ple (fully optimised).

1 copy−in (A, 1 )
2 sync (1 )
3 ke rne l : B ← A
4 copy−out (B, 4 )
5 ke rne l : C ← B
6 copy−out (C, 4 )
7 sync (4 )

Fig. 3. Illustrating the optimisation steps: original (left, Listing 5), partly optimised
(middle, Listing 6), fully optimised (right, Listing 7).

names for input arrays in neighbourhood -based skeletons for GPUs are replaced
by local indices and local array names. This transformation is a simple matter
of name-changing, the actual definition of the local indices and the pre-fetching
into local memories is performed within the corresponding skeletons.

Bones also performs several performance-oriented transformations, includ-
ing caching in the register file and thread coarsening. Register file caching replaces
array accesses (mapped to off-chip memories) with scalar accesses (mapped to
registers) in certain cases. For example, in Listing 1, the accesses to vector r

in lines 3 and 5 can be replaced by scalar accesses under the condition that a
final store to r is added after line 6. Thread coarsening (or merging) is a tech-
nique to increase the workload per thread. This comes at the cost of parallelism,
but could increase data re-use through locality or factor out common instruc-
tions [14]. In Bones, coarsening is enabled if the species encapsulates re-use over
a complete data structure. For example, in the case of ‘0:M,0:N|chunk(-,0:N)
→ 0:M,0:N|element’, a total of N · M elements are produced, while only M

chunks are available as input, resulting in the re-use of the entire input data
structure with a factor N . Coarsening is only enabled for kernels without diver-
gent control flow and with sufficient data re-use and parallelism.

To further improve the performance of the generated code, Bones enables
zero-copy for the OpenCL targets using an aligned memory allocation scheme.
In OpenCL, data needs to be explicitly copied from host (typically a CPU)
to device (the accelerator). In some cases, the host and device share the same
memory, e.g. for CPU targets or for fused CPU/GPU architectures. In these
cases, a memory copy can be saved by performing a pointer-only copy, i.e. a
zero-copy. Bones enables zero-copying in OpenCL for Intel CPUs by fulfilling
two requirements: 1) using specific OpenCL memory map and memory un-map
functions, and 2), aligning all memory allocations to 128-byte boundaries. To



ensure aligned memory allocations in the original code, Bones provides a custom
malloc implementation and furthermore replaces existing stack allocations with
aligned dynamic allocations in a matter similar to [12].

Furthermore, Bones flattens data structures to a single dimension when
generating OpenCL or CUDA code. Parallel loops are also flattened, decou-
pling the amount of loops from the thread or work-item structures provided by
OpenCL and CUDA. In contrast, many existing approaches (e.g. [1, 7, 22]) map
multi-dimensional loops to the multi-dimensional thread or work-item structures
provided by OpenCL and CUDA. Although this might be a straightforward so-
lution, it limits the applicability of these approaches to 2 or 3-dimensional loops
and data structures. By flattening, Bones omits these limitations and is able to
handle any degree of loop nesting and arrays of any dimension.

5 Evaluation and Experimental Results

To evaluate the applicability of algorithmic species and to validate aset and
Bones, we test against the PolyBench/C 3.2 benchmark suite5, which is a pop-
ular choice for evaluating polyhedral-based compilers [1, 22]. We choose this suite
because it allows us to compare against polyhedral-based compilers, and allows
us to perform automatic extraction of algorithmic species. Nevertheless, Bones

can still be used for code that does not fit the polyhedral model, albeit that the
classification of code has to be performed manually (see [16] for examples).

The PolyBench suite contains 30 algorithms, in which we identify a total of
110 species6 with aset, or 60 if we exclude those found within other species
(i.e. nested species). The classified code for these 60 species can now be fed
into Bones. However, there is a large number of benchmarks with species in
the form of inner-loops with little work, executing in a fraction of a millisecond,
making start-up and measurement costs dominant. For our evaluation, we there-
fore exclude adi, cholesky, dynprog, durbin, fdtd-2d-apml, gramschmidt, lu,
ludcmp, reg detect, symm, trmm and trisolv. The exclusion of these bench-
marks can be automated by integrating a basic roofline-like performance model.
Additionally, we exclude floyd-warshall and seidel-2d because they contain
no parallelism in their current form. All in all, we include 34 species (not nec-
essarily unique) spread across 16 benchmarks. Within a benchmark, we number
the found algorithmic species sequentially7.

Although GPUs are currently the primary target of Bones, we also include
an evaluation of our multi-core CPU targets: we perform a comparison of the
3 CPU targets against single-threaded code. Next, we compare our approach
for the CUDA target against two state-of-the-art polyhedral-based compilers:
Par4All [1] and ppcg (based on the pluto algorithm) [22]. To the best of
our knowledge, these are the only available fully-automatic compilers able to

5 PolyBench website: www.cse.ohio-state.edu/~pouchet/software/polybench/.
6 PolyBench annotated with species: http://parse.ele.tue.nl/species/.
7 See http://parse.ele.tue.nl/species/ for the corresponding species.



generate CUDA code directly from C (we exclude C-to-CUDA [2], as it is lim-
ited to kernel generation only). Finally, we discuss the benefits of our unique
combination of a skeleton-based compiler and an algorithm classification.

5.1 OpenCL and OpenMP on a Multi-core CPU

We perform experiments on a 4-core CPU comparing the 3 CPU targets (OpenMP,
Intel SDK OpenCL, AMD SDK OpenCL) against single-threaded C code. We
use an Intel Core i7-3770 (4 cores, 8 threads) with support for AVX. We use the
auto-vectorising GCC 4.6.3 (-O3) compiler for the single-threaded and OpenMP
targets. Furthermore, we use AMD APP 2.7 and Intel OpenCL 2012 for the
OpenCL targets. We disable the CPU’s Intel Turbo Boost technology. We use
the ‘large dataset’ as defined in PolyBench with single-precision floating point
computations. We average over multiple runs and start each run with a warm-up
dummy computation followed by a cache flush.

We show the results of the experiments in Fig. 4. We see geometric mean
speed-ups of 2.1x (Intel SDK OpenCL), 2.4x (AMD SDK OpenCL), and 2.7x
(OpenMP). Although the three targets use the same hardware, we still observe
significant performance variation for the individual benchmarks. Differences are
among others the lower thread creation cost for OpenMP, the different thread
scheduling policies, and different auto-vectorisers. For a detailed comparison
of OpenMP against OpenCL in general, we refer to other work, such as [20].
Furthermore, we expect to see improved speed-ups by applying a pre-processing
parallelisation pass first (such as pluto or [19]), which we leave for future work.

5.2 Comparison of the CUDA Target Against the State-of-the-Art

For our CUDA experiments, we use an NVIDIA GeForce GTX470 GPU (448
CUDA cores) and GCC 4.6.3 (-O3) and NVCC 5.0 (-O3 -arch=sm 20) for com-
pilation. We test Bones version 1.2 against the latest versions of Par4All (ver-
sion 1.4.1) and ppcg (pre-release commit 94af357, Feb 2013)8. We test Bones

with and without host-accelerator transfer optimisations. Furthermore, we in-
clude as a reference PolyBench/GPU [9], hand written CUDA code9. As before,
we use the single-precision ‘large dataset’ and average over 10 runs, starting with
a warm-up.

We perform two tests. For our first test, we evaluate the quality of the gener-
ated CUDA kernels only. We generate kernels for each of the found algorithmic
species in isolation using Bones, Par4All, and ppcg. As before, within a
benchmark, we number the found algorithmic species incrementally, while av-
eraging the execution time of kernels executed multiple times. The results of
the kernel quality test can be found in Fig. 5 in terms of speed-up of Bones

compared to Par4All and ppcg. We make the following remarks:

8 We test ppcg with default tiling options. Manual tuning of the tiling parameter for
each benchmark is omitted in this work to keep the obtained results fully automatic.

9 PolyBench/GPU provides non-optimised CUDA code. Unfortunately, fully optimised
hand-written code is not available for these benchmarks.
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Fig. 4. Speed-ups of the OpenCL (� for the Intel SDK and � for the AMD SDK) and
OpenMP (�) targets compared to single-threaded code on a 4-core CPU.

– Bones shows significantly better performance (2x or more) for 21 kernels
(compared to Par4All) and 11 kernels (compared to ppcg).

– In a few cases (e.g. correl-3,covar-2,jacobi2d-2) ppcg and/or Par4All

are slightly ahead due to better data locality enabled by loop tiling.

– A number of kernels (e.g. atax-1, bicg-2, mvt-1, syr2k, syrk) use a skeleton
in the form of Listing 4 to ensure coalesced memory accesses, yielding a
significant speed-up over Par4All and a moderate speed-up over ppcg.

– In the cases of 2mm and 3mm (both matrix multiplication), Bones is on-par
with ppcg. In these cases, Bones relies on the hardware cache, while ppcg

performs loop tiling and explicit caching through the GPU’s local memories.

– In several cases (2mm, 3mm and gemm), Bones and ppcg both perform thread

coarsening, gaining performance over Par4All.

– Bones achieves a 1.6x (vs. Par4All) and 1.4x (vs. ppcg) average speed-up.

For the second test, we measure the full benchmark (‘scop’ in PolyBench
terminology). We show the results in Fig. 6 in terms of speed-up compared to
optimised Bones code. The (experimental) option to optimise CPU-GPU trans-
fers for Par4All (--com-optimization) does not work for these benchmarks.
For a fair comparison, Par4All should therefore be compared to Bones without
transfer optimisations. We make the following remarks with respect to Fig. 6:
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Fig. 5. Speed-up of CUDA kernel code generated by Bones compared to Par4All

(�) and ppcg (�) for the PolyBench suite (higher is in favour of Bones). ppcg was
unable to generate code for correl-2, doitgen-1, and doitgen-2 (marked by an x).

– In almost all cases, Bones with transfer optimisations outperforms the other
compilers. On average, Bones achieves a speed-up of 3.0x and 1.2x over
Par4All and ppcg respectively (excluding the 100x or worse cases).

– Hand written (non-optimised) PolyBench/GPU code [9] is in many cases
significantly slower compared to compiler generated code (on average 4.2x
compared to Bones).

– A 1.8x average speed-up is achieved by performing CPU-GPU transfer op-
timisations with aset and Bones, although further optimisations are still
possible. For example, in the case of fdtd-2d, ppcg is able to move addi-
tional CPU-GPU transfers to outer loops, resulting in a significant speed-up.

In general, we conclude that the supplied skeletons for Bones already out-
perform Par4All and ppcg on average for the CUDA kernels found in these
benchmarks. For the 34 kernels shown in Fig. 5, Bones uses 5 different skele-
tons, each used at least twice. Furthermore, we note that Bones, in contrast to
polyhedral compilers, can be used for code containing non-affine loop nests.

5.3 Benefits of Skeleton-Species Integration

By integrating algorithmic species with a skeleton-based compiler, we have cre-
ated a unique approach to automatically generate code for parallel targets. We
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Fig. 6. Speed-up of Bones compared to PolyBench/GPU (�), Par4All (�), ppcg

(�), and Bones without transfer optimisations (�) (higher is in favour of Bones).
PolyBench/GPU is not available for doitgen, gemver, jacobi-1d, and jacobi-2d (x).

see this novel combination as a way to profit from the benefits of skeleton-based
compilation, without having its drawbacks.

Skeleton-based compilation has several benefits [4]. Firstly, compilation re-
quires only basic transformations that can be performed at abstract syntax tree
level, omitting the need for intermediate representations which often lose code
structure and variable naming. This allows the compiler to generate readable
code, enabling opportunities for further fine-tuning and manual optimisation.
Furthermore, the skeletons themselves can be formatted to include structure and
code comments, greatly benefiting readability. Secondly, skeleton-based compi-
lation benefits from the flexibility of improving the compiler or extending to
other targets: simply adjust or write the appropriate skeletons. Finally, sev-
eral optimisations applied within skeletons in Bones cannot be applied as code
transformations on the original code. For example, polyhedral compilers could
generate the first kernel of the example skeleton in Listing 4 (lines 1-8), but will
not be able to generate an additional pre-processing kernel (lines 10-23), as it is
not a permutation of the original code.

Because of the integration of algorithmic species, Bones is the first skeleton-
based compiler that can be used in a fully-automatic tool-flow. This removes
the requirements of existing skeleton-based approaches such as SkePU [7] and
SkeCL [21] to manually identify a skeleton and modify the code such that the
skeleton can be used. Furthermore, algorithmic species provides a clear, struc-



tured, and formally defined way of using skeletons, which can be beneficial in
cases where manual classification is unavoidable.

6 Conclusions and Future Work

In this work we have demonstrated the successful integration of an algorithm
classification (algorithmic species) with skeleton-based compilation. This results
in a novel method to perform automatic generation of parallel code, transforming
sequential C code into readable CUDA, OpenCL or OpenMP code. With aset,
we are able to automatically extract species from affine loop nests. The species
are used within the skeleton-based compiler Bones to select a skeleton. Bones

is able to produce readable code, provides flexibility for new targets and opti-
misations, and generates efficient code. Furthermore, the combination of aset

and Bones allows us to perform host-accelerator transfer optimisations.
Many existing skeleton-based compilers [3, 4, 7, 21] have failed to become

popular, despite their flexibility and high performance potential. By combining
skeletons with an algorithm classification, we overcome their drawbacks: we do
not require users to select a skeleton, and we have a fixed and structured classi-
fication. Compared to polyhedral compilers on the other hand (e.g. [1, 22]), we
have shown significant speed-ups: 1.6x and 1.4x for CUDA kernel code versus
Par4All and ppcg respectively. Additionally, Bones generates readable code,
leaving the user with further possibilities for optimisation or fine-tuning of the
algorithm. Furthermore, Bones is applicable outside the scope of affine loop
nests, although species may have to be identified manually.

In this work, we have focused mainly on the CUDA GPU target. As part of
future work, we plan to compare our OpenCL targets against the state-of-the-art
as well. Furthermore, we plan to extend Bones by investigating the benefits of
kernel fusion and fission.
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