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ABSTRACT

Recent advances in multi-core and many-core processors re-
quires programmers to exploit an increasing amount of par-
allelism from their applications. Data parallel languages
such as CUDA and OpenCL make it possible to take ad-
vantage of such processors, but still require a large amount
of effort from programmers.

A number of parallelizing source-to-source compilers have
recently been developed to ease programming of multi-core
and many-core processors. This work presents and evalu-
ates a number of such tools, focused in particular on C-to-
CUDA transformations targeting GPUs. We compare these
tools both qualitatively and quantitatively to each other and
identify their strengths and weaknesses.

In this paper, we address the weaknesses by presenting a
new classification of algorithms. This classification is used in
a new source-to-source compiler, which is based on the algo-
rithmic skeletons technique. The compiler generates target
code based on skeletons of parallel structures, which can
be seen as parameterisable library implementations for a
set of algorithm classes. We furthermore demonstrate that
the presented compiler requires little modifications to the
original sequential source code, generates readable code for
further fine-tuning, and delivers superior performance com-
pared to other tools for a set of 8 image processing kernels.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures;
D.3.4 [Programming Languages]: Processors—Compil-
ers
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1. INTRODUCTION
Throughout the past decades, the tremendous growth of

single-core processor performance has been the key-enabler
for technology to become ubiquitous in our society. This
growth ended around 2004, limited by among others power
dissipation. Performance growth has been re-enabled re-
cently by adding multiple processor cores per chip. Enabled
by Moore’s law, this trend (multi-core) is expected to con-
tinue for the next decade and is expected to enable 100-core
processors by 2020 [6]. Meanwhile, another trend (many-
core) already enables more than 500 cores per chip. This
is exemplified by the Graphics Processing Unit (GPU). The
GPU, driven by the computer gaming industry, bundles nu-
merous smaller processing cores to create a massively paral-
lel and high throughput processor architecture.

Both trends (multi-core and many-core) require applica-
tion programmers to exploit more and more parallelism. At
the same time, these programmers face an increasing amount
of heterogeneous compute platforms and processors, as both
multi-core and many-cores architectures are used side-by-
side in the same device or even on the same chip [12]. In
order to fully utilize multi-core and many-core processors,
current and future programmers are challenged to achieve a
high amount of parallelism and handle heterogeneity.

Recently, many new parallel programming languages such
as OpenCL, NVIDIA’s CUDA and Intel’s TBB have emerged
to help application programmers to face the challenges of
programming multi-core and many-core processors. Still,
even these new languages require the programmers to ex-
plicitly extract the parallelism from their applications. They
have to create and manage thousands of threads, deal with
concurrent execution, synchronization, race conditions and
atomicity. Additionally, these languages expose a complete
memory hierarchy to the programmer. Programmers have
to explicitly copy data between different processors, make
use of scratchpad memories, and deal with issues such as
memory access patterns and bank conflicts.

In a recent study, programming of current and future pro-
cessors has been listed as one of the major challenges in
computing [12]. Already a significant amount of research
has been dedicated to this challenge, but a solution applica-
ble in practice is yet to be found. In this work, we focus on
the parallel programming challenge for GPUs, and, in par-
ticular, search for a solution which is applicable in practice.
We summarize the contributions of this work as follows:

• We compare four existing tools addressing the pro-
grammability challenges of GPUs both qualitatively
and quantitatively.



• We introduce a new algorithm classification, which can
be used among others with the algorithmic skeletons
technique to address the programmability challenge.

• We introduce a new source-to-source compiler to ease
GPU programming, which is based on the algorith-
mic skeletons technique and the new algorithm classi-
fication. We focus heavily on the applicability of this
compiler in practice, and address shortcomings of other
tools with similar goals.

The remainder of this paper is organized as follows. First,
four existing tools are introduced and compared against each
other qualitatively in section 2. This section also provides
a background on the algorithmic skeletons technique and
discusses its shortcomings. Next, in section 3, the new al-
gorithm classification is introduced. This classification is
used in the new source-to-source compiler, which is intro-
duced and discussed in section 4. The new compiler and
the four earlier introduced tools are compared to each other
quantitatively in section 5. Finally, we conclude the work in
section 6.

2. EXISTING C-TO-CUDA TOOLS
A significant amount of research has been dedicated to the

parallel programming challenge. In particular, for GPUs,
different theories, methods, guidelines and tools are avail-
able. In this section, we select and introduce four of these
existing tools and perform a qualitative comparison, sup-
ported by table 1. In section 5, we also make a performance-
wise comparison. To the best of our knowledge, this work is
the first direct comparison between such tools.

To address the programmability issues of GPUs, several
source-to-source compilers which generate GPU code were
developed. We focus in particular on source-to-source com-
pilers which use C-code as an input and output CUDA. In
this section we identify tools based on three different meth-
ods: 1) directive based tools, 2) tools using algorithmic skele-
tons, and 3), polyhedral model based tools. We discuss a
directive based tool (hiCUDA [10]), an algorithmic skele-
ton tool (SkePU [9]), and a tool based on the polyhedral
model (Par4All [1]) in more detail. Additionally, we discuss
a commercial tool: PGI Accelerator [23].

In order to illustrate the programming style for these tools
and the required programming effort, we take C-code for a
convolution operation as an example. The computational
part of the algorithm is shown in listing 1.

1 int N = 512∗512;
2 for ( i =1; i<N−1; i=i +1)
3 B[ i ] = 3∗A[ i −1] + 4∗A[ i ] + 3∗A[ i +1] ;

Listing 1: Convolution C-code example.

2.1 Directives using hiCUDA
Source-to-source compilers based on directives rely on the

help of programmers to generate code. A common case is the
use of annotations (e.g. pragmas) in the source code, which
guide (or: direct) the compiler towards generating efficient
target code. We identify a number of C-to-CUDA compilers
using such a technique, most of them based on OpenMP-
style pragmas [8] [13] [14]. Furthermore, we identify the

domain specific tool Mint [22] and the CUDA-to-CUDA op-
timizer CUDA-lite [21]. In this work, we choose to discuss
the C-to-CUDA compiler hiCUDA [10] in more detail, partly
because of the availability of source-code and partly because
of the relatively high number of scientific citations.

To illustrate the use of hiCUDA, we apply the directives
to the convolution example. As seen in listing 2, the original
code is still present in the hiCUDA code (lines 1, 7 and 10),
but a number of directives have been added. First of all,
array sizes have to be set in case of dynamically allocated
memory (line 2). Secondly, memory has to be managed,
including allocation on the GPU (lines 3-4), copying between
CPU and GPU (lines 3 and 13), and freeing on the GPU (line
14). Finally, the kernel has to be defined (lines 5-12). Most
of these directives translate directly to CUDA statements.

1 int N = 512∗512;
2 #pragma hicuda shape A[N] B[N]
3 #pragma hicuda g l oba l a l l o c A[ ∗ ] copyin
4 #pragma hicuda g l oba l a l l o c B [ ∗ ]
5 #pragma hicuda ke rne l conv tb lock (N/256)

thread (256)
6 #pragma hicuda l o o p p a r t i t i o n ove r tb l o ck

over thread
7 for ( i =1; i<N−1; i=i +1) {
8 #pragma hicuda shared a l l o c A[ i −1: i +1]

copyin
9 #pragma hicuda b a r r i e r

10 B[ i ] = 3∗A[ i −1] + 4∗A[ i ] + 3∗A[ i +1] ;
11 }
12 #pragma hicuda kerne l end
13 #pragma hicuda g l oba l copyout B [ ∗ ]
14 #pragma hicuda g l oba l f r e e A B

Listing 2: Convolution using hiCUDA directives.

Using hiCUDA, the programmer is still required to have
GPU programming experience. For example, the program-
mer has to specify the desired amount of threads and thread-
blocks and has to specify which for-loops to parallelize. Ad-
ditionally, when using the on-chip scratchpad memory, the
programmer has to supply directives defining which mem-
ory section to store locally and when to synchronize between
threads (lines 8-9 in listing 2). An advantage of hiCUDA
is its interprocedural support. For example, ‘kernel’ direc-
tives can be placed around function calls, while others can
be placed within these functions. The code which hiCUDA
generates can be inspected and modified. However, the gen-
erated code is not straightforward to read and thus not suit-
able for further fine-tuning.

2.2 Algorithmic skeletons using SkePU
Algorithmic skeletons were introduced in 1991 by Cole [7],

a technique which revolves around a set of parameterisable
skeleton implementations. Each skeleton implementation
can be seen as template code for a specific algorithm class
on a target architecture. Programmers are able to generate
efficient target code by first identifying a number of lines of
code as a certain class, followed by invoking the correspond-
ing skeleton implementation. If no skeleton implementation
is available for the specific class-architecture combination, it
can be added manually. Future algorithms of the same class
can then benefit from re-use of the skeleton code.

Applying algorithmic skeletons to many-core architectures
such as a GPU has been accomplished recently in several



Table 1: A comparison of properties of four existing tools and the tool introduced in this work (Bones). We
annotate properties either with a minus-sign (negative property) or with a plus-sign (positive property).

hiCUDA SkePU PGI Accelerator Par4All Bones

tested version 0.9 0.7 11.10 1.2 0.8
availability open-source open-source commercial open-source open-source
target language support CUDA CUDA/OpenCL CUDA CUDA/OpenMP1 CUDA/OpenCL

compilable without the tool? yes (+) no (-) yes (+) yes (+) yes (+)
uses regular C data types? yes (+) no (-) yes (+) no malloc (-)1 yes (+)
array dimensions are required at? run-time (+) run-time (+) compile-time (-) run-time (+) compile-time (-)
readability of the code moderate (-) N/A (-) unreadable (-) good (+) good (+)
has multi-GPU support? no (-) yes (+) no (-) no (-) no (-)
has support for kernel fusion? no (-) no (-) no (-) no (-)1 no (-)

works [9] [16] [18] [20]. An implementation is only made
publicly available for SkePU [9], which supports both CUDA
and OpenCL as targets. In this work, we focus on SkePU.

We illustrate the use of SkePU with the convolution exam-
ple as shown in listing 1. The SkePU source code in listing 3
is obtained by performing a number of steps on the convolu-
tion code. First of all, we need to select a matching skeleton
for our code. SkePU currently supports 7 skeletons (map,
mapArray, mapOverlap, mapReduce, reduce, scan and gen-
erate), from which we select mapOverlap to match the con-
volution code (line 13). Secondly, we copy and convert our
arrays into the skepu::Vector or skepu::Matrix containers
(lines 8-12 and 15-17). Finally, we define the functionality
(lines 2-4) and invoke the convolution kernel (line 14).

1 // Globa l func t i on d e f i n i t i o n
2 OVERLAP FUNC( conv , f loat , 1 , in ,
3 return 3∗ in [−1] + 4∗ in [ 0 ] + 3∗ in [ 1 ] ;
4 )
5
6 // Main func t ion
7 int N = 512∗512;
8 skepu : : Vector<f loat> A v(N) ;
9 skepu : : Vector<f loat> B v (N) ;

10 for ( i =0; i<N; i=i +1) {
11 A v [ i ] = A[ i ] ;
12 }
13 skepu : : MapOverlap<conv> convolve (new conv ) ;
14 convolve (A v , B v ) ;
15 for ( i =0; i<N; i=i +1) {
16 B[ i ] = B v [ i ] ;
17 }

Listing 3: Convolution using SkePU’s skeletons.

SkePU does not require a separate compilation stage, in-
stead, including the supplied header files and compiling with
NVIDIA’s CUDA compiler nvcc is sufficient. However, us-
ing SkePU requires a rewrite of the original code as shown
in listing 3, which can be disadvantageous. Also, the tool
requires data structures to be in a special format. In some
cases, this will not pose a problem, as the whole program
can be designed using the SkePU containers (see the exam-
ple in listing 3). In other cases, when kernels are considered
as small parts of an existing larger application, a copy-in
and a copy-out is required. We consider the latter case in
this work, but acknowledge that this restriction will not al-
ways pose a problem. We furthermore note that SkePU has
support for lazy memory copying, can generate multi-GPU
code, and supports multiple targets (OpenCL and CUDA).

2.3 PGI Accelerator
PGI Accelerator [23] is a commercial C/Fortran-to-CUDA

source-to-source compiler. It performs extensive code anal-
ysis, but also relies on a number of programmer supplied
directives. We illustrate the use of the compiler by showing
the convolution example in listing 4. In the best-case, the
PGI Accelerator requires only one directive (line 2) and will
analyze which arrays to copy to and from the GPU, which
loops to parallelize, which temporary results to store in on-
chip memory, etc. If the PGI Accelerator cannot find these
details, the user will be asked to supply directives. In this
case, we provide a directive (line 4) to inform the compiler
that the loop iterations are independent of each other.

1 int N = 512∗512;
2 #pragma acc r eg i on
3 {
4 #pragma acc for independent
5 for ( i =1; i<N−1; i=i +1)
6 B[ i ] = 3∗A[ i −1] + 4∗A[ i ] + 3∗A[ i +1] ;
7 }

Listing 4: Convolution using the PGI Accelerator.

The PGI Accelerator source-to-source compiler provides
information to the user as to how the CUDA implementation
is generated. The programmer can then supply additional
directives to guide the compiler in a specific direction. The
compiler furthermore lists details such as occupancy, type of
memory accesses, register usage, etc.

2.4 Using the polyhedral model with Par4All
Lastly, we briefly discuss C-to-CUDA compilers based on

the polyhedral model. Such compilers are able to perform
dependency analysis and loop transformations for affine loop
structures. Recently, support for GPUs has been added to
these compilers. Compilers based on the polyhedral model
are promising in the sense that they require little or no in-
put from the programmer, but they might be limited by
restricting transformations only to affine loop structures.

We identify three efforts to extend existing polyhedral
compilers in order to support C-to-CUDA. One of these ex-
tends the polyhedral compiler collection (PoCC) to support
C-to-CUDA compilation [2]. Although this work is promis-

1A to be released version of Par4All (1.3.1) will improve on
these aspects. This new version adds OpenCL as a target
language, does support malloc-statements, and provides an
algorithm to enable kernel fusion.



ing, a compiler has not been made publicly available yet. In
other work Pluto [3] is introduced, which is an automatic
parallelizing compiler based on the polyhedral model. It is
not further discussed in this work, since support for CUDA is
currently limited: it only generates the CUDA kernel code,
the CUDA host code has to be written manually and inte-
grated in the original program by hand. Finally, we identify
the Par4All project [1], which we discuss in more detail.

The code transformation and parallelization framework
PIPS is the main component of the Par4All project. In this
project, a source-to-source compiler is developed based on
PIPS, which targets the generation of among others CUDA
code. The Par4All compiler is fully-automatic, taking un-
modified C-code as input (e.g. the code in listing 1). Still,
a number of restrictions apply and code restructuring might
be required to achieve good performance. The generated
target code contains a large amount of macro’s, which hide
CUDA statements from the source file. The generated code
remains therefore readable.

2.5 Addressing the applicability of existing C-
to-CUDA tools

As stated before, we focus in this work on the applicabil-
ity of the discussed tools in practice. Although these tools
all greatly reduce the amount of effort needed to program
a GPU, most programmers still use a native programming
environment (e.g. CUDA). A major reason for this is per-
formance: although some tools yield performance close to
hand written code in some cases, they, as we will see later,
perform more than 10x worse in other cases. We believe
that programmers are willing to spend more effort to obtain
significantly improved performance for these cases.

Algorithmic skeletons provide a way to generate high per-
formance code, while using little or no code analysis nor
transformation techniques. Skeletons can be seen as highly
optimized library implementations for classes of algorithms
instead of for individual algorithms. The only question re-
mains is how to define such classes and their corresponding
skeletons. In this work, we aim to increase the applicabil-
ity of the algorithmic skeletons technique in practice. To
do so, we ideally require an algorithm classification which is
complete, detailed and straightforward to understand. The
granularity of such a classification is of high importance for
the applicability. When using algorithmic skeletons, a finer-
grained classification could yield a higher performance. On
the other hand, if the classification is coarser-grained, it can
be easier to use and to understand, and reduces the required
number of skeleton implementations. In this work, we find
a solution to this trade-off by introducing a modular and
parameterisable classification. This enables a fine-grained
classification while using a limited vocabulary.

Next to a new algorithm classification, we aim to improve
upon existing C-to-CUDA tools by the following two points.
Firstly, we aim to generate target code which is both editable
and readable by the programmer. In this way, code can be
fine-tuned manually to achieve maximal performance. Sec-
ondly, we want to keep the source code close to the original
code. In this way, less effort from the programmer is required
and code can still be compiled using a normal C-compiler.

3. ALGORITHM CLASSIFICATION
To support a new source-to-source compiler based on al-

gorithmic skeletons, we introduce a new algorithm classi-

fication. Detailed information on the classification can be
found in an extended technical report [15]. In this section,
we first give a small toy example, after which we introduce
the vocabulary and grammar of the classification. We illus-
trate this with a number of example classes and their formal
notations. Following, from the field of image processing, we
classify a number of elementary algorithms using the intro-
duced classification. Finally, we evaluate the classification.
The following notations are used in this section: (1) Xi, Y i

and Zi represent i-dimensional data structures, and (2) Xi
d

denotes the contents of a data structure Xi at coordinate d.

3.1 Code examples
We introduce the classification by giving an intuitive feel

through three example code snippets. The examples as given
in listing 5 are classified as follows:

• In lines 1-2 a vector of size K is element-wise multi-
plied, incremented, and stored as another vector. Since
every element of the input corresponds to an element
of the output and the vector size is K, we classify this
code snippet as ‘K|element → K|element’.

• The for-loop in lines 4-5 performs a similar opera-
tion, but now also requires two neighbours to com-
pute one output element. The classification becomes
‘K|neighbourhood(3) → K|element’, since the neigh-
bourhood is of size 3 (including the element itself).

• The final snippet (lines 7-8) processes the input per
element, but stores the result in a shared output. It is
therefore classified as ‘K|element → 1|shared’, with 1
being the size of the output.

1 for ( i =0; i<K; i=i +1)
2 B[ i ] = 2 ∗ A[ i ] + 5 ;
3
4 for ( i =0; i<K; i=i +1)
5 B[ i ] = 3∗A[ i −1] + 4∗A[ i ] + 3∗A[ i +1] ;
6
7 for ( i =0; i<K; i=i +1)
8 B = B + A[ i ] ;

Listing 5: Three example code snippets of different
classes.

3.2 Vocabulary and grammar
The classification is generalized and described using a vo-

cabulary and a grammar. The classification’s grammar is
defined as

P S|D [∧ S|D]∗ → S|D [∧ S|D]∗

in which the asterisk symbol (∗) implies zero or more oc-
currences of everything contained by brackets preceding the
asterisk. In this definition, P represents a prefix and occur-
rences of S|D represent input and output data-structures.
The prefix P , data access patterns D and dimensions S use
the following vocabulary:

P =

„

unordered
multiple

«

S =

0

B

B

@

A
AxB
...

Ax...xN

1

C

C

A



Table 2: A number of example classes illustrate the algorithm classification. The formal notation defines the
properties of a class.

id classification formal notation

1 AxB|element → AxB|element ∀d ∈ D : f
`

X2
d

´

→ Y 2
d

2 unordered AxB|element → AxB|element ∀d ∈ D ∃d′ ∈ D : f
`

X2
d

´

→ Y 2
d′

3 AxB|tile(1xB) → A|element ∀d ∈ D | d = k · T ′ : f
“

∀t′ ∈ T ′

“

X2
d+t′

””

→ Y 2
c | c = dx

4 AxB|tile(UxV) → A
U

x B
V
|element ∀d ∈ D | dx = k · U ∧ dy = k · V : f

“

∀t ∈ T
“

X2
d+t

””

→ Y 2
c | c = ( dx

U
,

dy

V
)

5 AxB|tile(UxV) → AxB|tile(UxV) ∀d ∈ D | dx = k · U ∧ dy = k · V : f
“

∀t ∈ T
“

X2
d+t

””

→ ∀t ∈ T
“

X2
d+t

”

6 AxB|element → A·UxB·V|tile(UxV) ∀d ∈ D : f
`

X2
d

´

→ ∀t ∈ T
`

X2
c+t

| c = (dx · U, dy · V )
´

7 AxB|neighbourhood(NxM) → AxB|element ∀d ∈ D : f
“

∀n ∈ N
“

X2
d+n

””

→ Y 2
d

8 AxB|neighbourhood(N) → AxB|element ∀d ∈ D : f
“

∀n′ ∈ N ′

“

X2
d+n′

””

→ Y 2
d

9 AxB|element → 1|shared ∀d ∈ D : f
`

X2
d
, Y 0

´

→ Y 0

10 AxB|element → C|shared ∀d ∈ D ∃v ∈ V : f
`

X2
d
, Y 1

v

´

→ Y 1
v

11 AxB|element ∧ AxB|element → AxB|element ∀d ∈ D : f
`

X2
d
, Y 2

d

´

→ Z2
d

Natural numbers k k ∈ N

Data structure coordinates D — AxB D = {(x, y) | 0 ≤ x < A ∧ 0 ≤ y < B}
Tile coordinates T — UxV T = {(x, y) | 0 ≤ x < U ∧ 0 ≤ y < V }
Tile coordinates T ′ — B T ′ = {(x, y) | 0 ≤ x < B ∧ y = 0}
Neighbourhood coordinates N — NxM N = {(x, y) | − ⌊N−1

2
⌋ ≤ x ≤ ⌈N−1

2
⌉ ∧ −⌊M−1

2
⌋ ≤ y ≤ ⌈M−1

2
⌉}

Neighbourhood coordinates N ′ — N N ′ = {(x, y) | − ⌊N−1

2
⌋ ≤ x ≤ ⌈N−1

2
⌉ ∧ y = 0}

Vector index V — C V = {(x) | 0 ≤ x < C}

D =

0

B

B

@

element
tile (S)

neighbourhood (S)
shared

1

C

C

A

The classification introduces the operation f(), which is
defined as the mathematical computation required to be per-
formed per input data element. The different data access
patterns D are defined as follows:

• The element access pattern represents a single inde-
pendent access of a data structure’s contents at each
coordinate.

• When accessing data in a tile(T) pattern, a structure of
dimensions T is accessed simultaneously, but indepen-
dent of other tiles in the same data structure. There
is no data re-use, all contents are accessed once.

• The neighbourhood(N) access pattern is similar to the
element pattern, but enables overlap. The pattern de-
scribes the re-use of a data structure’s contents for a
neighbourhood of dimensions N centered around each
coordinate of the structure. This data access pattern
is to be used as input pattern only.

• The shared data access pattern is an output pattern
only. It is used when multiple accesses occur to con-
tents at one coordinate in a data structure, and can
also involve reading from the output.

In general, the relation between the input and output pat-
terns is based on a one to one coordinate mapping. The use
of the unordered prefix implies that any coordinate mapping
can be used, such as a scattered or reverse mapping. The
multiple prefix can be used in combination with the shared
pattern, when more than one output is written by the oper-
ator f().

Table 3: Example primitives and their correspond-
ing class-id. These id’s relate to the classes as de-
fined in table 2.

example primitive class-id

image copy 1
binarization 1
colour translation 1
gamma correction 1
contrast enhancement 1
arithmetic & logic (monadic) 1

rotate 90 degrees 2
xy-mirroring 2
rotate (forward warping, no interpolation) 2
shear-x (forward warping, no interpolation) 2

column projection 3

pixelization 4 followed by 6
adaptive binarization (alternative 1) 4 followed by 6

2D type II discrete cosine transform 5

convolution (static filter) 7
adaptive binarization (alternative 2) 7
erode 7
dilate 7

separable 2D filter (in dimension A) 8
separable 2D filter (in dimension B) 8

sum 9
min/max 9

histogram 10

differencing 11
arithmetic & logic (dyadic) 11

3.3 Example classes and example primitives
To illustrate the use of the classification and to get an

intuitive feel for it, we present a number of example classes
in table 2 (more examples and a detailed explanation are
found in [15]). We refer to the id ’s listed in this table as



a reference to the corresponding class and its formal nota-
tion. In this table, we see two embarrassingly parallel classes
(class 1 and 2), of which the second class’ coordinate rela-
tion is scattered. Classes 3, 4, 5, and 6 are tile-based com-
putations. While class 6’s output has increased dimensions,
class 3 and 4’s output is smaller compared to the input.
For class 5, dimensions remain unchanged. Following, two
neighbourhood-based computations are listed, using either
a 2D neighbourhood (class 7) or a 1D neighbourhood (class
8). Classes 9 and 10 perform a scalar and a vector-based re-
duction respectively. Finally, class 11 uses multiple inputs.

Related to the example classes in table 2, we list a number
of elementary algorithms (primitives or kernels) in table 3.
These primitives can be seen as building blocks for larger
algorithms and applications in the domains of image pro-
cessing and computer vision. We take four primitives from
table 3 to illustrate a number of classes from table 2:

• We classify contrast enhancement as ‘AxB|element
→ AxB|element’, in which A and B are the x and y-
dimensions of the input and output image. The struc-
ture of the primitive resembles the example given in
lines 1-2 of listing 5, but performs a different opera-
tion using a different function f().

• The primitive rotate 90 degrees is classified as ‘un-
ordered AxB|element → AxB|element’. As before, an
element-wise operation is performed, but now with a
scattered coordinate mapping, which is necessary to
perform the rotation.

• The algorithm pixelization, consisting of two smaller
parts, is classified as a sequence of ‘AxB|tile(UxV) →
A
U

xB
V
|element’ and ‘ A

U
xB

V
|element → AxB|tile(UxV)’.

First, an operation is performed per tile of the input
image, resulting in a fewer number of elements in an
intermediate image. Then, each of these intermediate
elements is copied into a tile of the output image.

• Many 2D convolution filters can be separated into a
sequence of two 1D filters. We classify one of these
separable 2D filters as a 1D neighbourhood opera-
tion on a 2D input image: ‘AxB|neighbourhood(N) →
AxB|element’.

3.4 Evaluation of the classification
The presented classification is evaluated in detail in [15].

In this section, we evaluate the classification with respect to
completeness, granularity and understandability and briefly
compare the classification to existing work.

Completeness We have shown that a significant amount
of algorithm primitives can be classified under the pre-
sented classification. Larger algorithms can be split
into multiple sections, each with code sections cor-
responding to a primitive. Irregular algorithms and
primitives with limited or no parallelism can be clas-
sified under less constrained classes, such as the unre-
stricted class ‘S|tile(S) → S|shared’. Furthermore, the
use of a modular classification enables the support for
any number of input and output data structures.

Granularity We add parameters for data structure, neigh-
bourhood and tile sizes, making it possible to achieve
a fine granularity if needed.

Understandability The classification uses a limited set
of data-structure access patterns, suggesting ease of
adaptability.

The presented classification shows many similarities to the
domain specific classifications presented in [4], [9] and [19],
in which element-wise, neighbourhood and reduction classes
also exist. Two major differences are observed: (1) the mod-
ularity and (2) the parameter-based approach. Firstly, with
a modular classification, classes do not have to be defined,
but can be constructed using a given grammar and a lim-
ited vocabulary. Secondly, the use of parameters provides
a manner to distinguish different sizes and dimensions from
each other - if needed. For example, we can distinguish a
large neighbourhood from a small neighbourhood (and thus
create two skeletons), but we can group together 1D and 2D
tiles (creating one skeleton).

In comparison to each of the 10 classifications discussed
in [5], we propose significantly more different classes (mod-
ularity and parameters) and provide a much more detailed
description of the primitive (parameters). The more de-
tailed a classification is, the more specific skeletons can be
constructed. If skeletons are very specific, the resulting code
will benefit the most from the target processor’s capabilities.

4. SKELETONS REVISITED
In this work we present Bones, a source-to-source compiler

based on algorithmic skeletons and the presented algorithm
classification. The compiler takes C-code annotated with
class information as input and generates parallelized tar-
get code. At this moment, targets include NVIDIA GPUs
(through CUDA), AMD GPUs (through OpenCL) and x86
CPUs (through OpenCL).

To illustrate the use of Bones, we evaluate the example
convolution code as shown in listing 1 (section 2). Bones
requires the programmer to supply a directive to specify the
algorithm class (line 2 in listing 6). A second directive de-
notes the end of the kernel, which programmers also can use
to provide an optional name (line 5). This section explains
the internals of the compiler, and compares the compiler
qualitatively with the earlier introduced tools.

1 int N = 512∗512;
2 #pragma ke rne l N | neighb (3) −> N | element
3 for ( i =1; i<N−1; i=i +1)
4 B[ i ] = 3∗A[ i −1] + 4∗A[ i ] + 3∗A[ i +1] ;
5 #pragma endkerne l conv

Listing 6: Convolution code accelerated with Bones.

4.1 The Bones source-to-source compiler
Bones is written in the Ruby programming language and

is available through our website2. The compiler is based
on the C-parser CAST 3, which is used to parse the input
code into an abstract syntax tree (AST) and to generate the
target code from a transformed AST. A high-level overview
of Bones is shown in figure 1, while a more detailed view is
shown in figure 2.

2http://parse.ele.tue.nl/
3http://cast.rubyforge.org/



Figure 1: High level overview of the Bones source-
to-source compiler.

Figure 2: Detailed view of the core components of
Bones.

The Bones compiler performs four steps. Firstly, a pre-
processor extracts the user supplied class information from
the source code (label 1 in figure 1). Code in between the
kernel and endkernel statements is defined as the kernel
code. Secondly, the AST of the kernel code and the AST
of the original code are analyzed to obtain information on
the used variables (label 2 in figures 1 and 2), e.g. are they
dynamically or statically allocated, are they private to the
kernel, of which dimension are they. Thirdly, the kernel AST
is transformed according to a per class unique transforma-
tion list (label 3 in figures 1 and 2). These transformations
are fairly basic, e.g. renaming of variables, removal of the
outer loop. Lastly, the skeletons are instantiated (label 4
in figures 1 and 2). A common library supplies parameter-
ized host code, including memory allocation and memory
transfer mechanisms. The skeleton library supplies both pa-
rameterized host code and kernel code. The parameters are
instantiated based on the extracted variable information and
the user supplied class details.

Bones uses the in this work introduced algorithm clas-
sification as a basis for the skeleton library. Currently, a
total of 24 skeletons are provided for three different targets:
gpu-nvidia, gpu-amd and cpu-opencl. For the latter two, 6
skeletons are implemented in OpenCL (different versions for
different targets), while 12 skeletons are already available in
CUDA for the gpu-nvidia target, supporting at least all the
primitives listed in table 3.

4.2 Evaluating Bones
The source-to-source compiler Bones is evaluated qualita-

tively in this section, supported by table 1. The presented
compiler improves upon existing C-to-CUDA tools by three
main factors:

1. Bones generates readable and editable code. Because
the code generated was kept in AST form, it remains
very readable. The original variable names and cod-
ing style are still present in the generated code. Fur-
thermore, the skeletons are formatted to contain rel-

evant variable names and comments. Readability is
paramount for further fine-tuning of the algorithm in
case the provided skeletons are not fine-grained enough.
The discussed tools hiCUDA and PGI Accelerator do
provide editable code, but the readability is presenting
a major hurdle. SkePU instantiates skeletons at run-
time, leaving no possibilities for further fine-tuning.
Par4All in contrast does generate readable code.

2. Bones is based on a well-defined algorithm classifica-
tion, which is presented in this work. In SkePU for
example, a new skeleton with a new name might be
added by the developers. In the case of Bones, the
classification’s grammar and vocabulary is already de-
fined. Additionally, the classification is much finer-
grained, providing data, tile and neighbourhood di-
mensions and sizes.

3. Similar to PGI Accelerator, only a minimum effort is
required (two directives) to transform the original code
into code suitable for the compiler. Additionally, the
original code is kept intact, which can be useful to test
functional correctness or to execute on legacy systems.
The tools hiCUDA, PGI Accelerator and Par4All also
have this latter advantage, but SkePU in contrast re-
quires a complete rewrite of the code.

Bones is also known to have several weaknesses. Firstly,
as with other skeleton-based approaches, Bones relies on the
programmer to identify and select a corresponding class for
each primitive. If the programmer selects a non-matching
class, the compiler will generate incorrect code. Secondly,
Bones accepts only a subset of C for the kernel code. For
example, function calls are not supported as of now. Thirdly,
reflected by table 1, we note that Bones currently does not
allow array sizes to be defined at run-time, does not support
multi-GPU and is not able to fuse multiple kernels. These
weaknesses will be addressed in future work.

5. PERFORMANCE EVALUATION
In this work, we discussed four existing tools to ease GPU

programming and compared them qualitatively. Also, we
introduced a new source-to-source compiler based on algo-
rithmic skeletons. In this section, we evaluate all five tools
performance-wise, which we base on a real-life example ap-
plication containing a variety of kernels. Additionally, we
evaluate Bones for different targets.

In our setup, we use a system consisting of a 4-core Intel
Core-i7 930 CPU and two GPUs: an NVIDIA GeForce GTX
470 and an AMD Radeon HD5850. Both the CPU and the
AMD GPU are programmed using OpenCL through AMD’s
APP version 2.5. The NVIDIA GPU is programmed using
CUDA SDK version 4.1.

5.1 An example application
To compare the existing tools and the new source-to-

source compiler Bones, we select an example case-study ap-
plication. We use a computer vision application with a vari-
ety of image processing primitives. This application is used
in the production process of organic LEDs, where the centers
of individual LEDs have to be identified under challenging
throughput and latency requirements. This can be achieved
using the 3-stage fast focus on structures flow, which is dis-
cussed in detail in [11]. The three stages are applied subse-



Table 4: Classification of the application’s image processing primitives according to the presented grammar
and vocabulary, and a comparison of the required code changes/additions for four tools in number of lines of
code (including directives).

primitive classification hiCUDA SkePU PGI Accelerator Par4All Bones

histo histogram 1024x1024|element → 256|shared 29 LoC - 17 LoC 0 LoC 2 LoC
max-1 maximum-1 256|element → 1|shared - 7 LoC 4 LoC - 2 LoC
max-2 maximum-2 2097152|element → 1|shared - 7 LoC 4 LoC - 2 LoC
thres threshold 1024x1024|element → 1024x1024|element 11 LoC 15 LoC 3 LoC 0 LoC 2 LoC
eros1 erosion 7x7 1024x1024|neighb(7x7) → 1024x1024|element 12 LoC 21 LoC 4 LoC 0 LoC 2 LoC
eros2 erosion 1D 2097152|neighb(7) → 2097152|element 10 LoC 15 LoC 3 LoC 0 LoC 2 LoC
xproj X-projection 1024x1024|tile(1x1024) → 1024|element 8 LoC - 2 LoC 0 LoC 2 LoC
yproj Y-projection 1024x1024|tile(1024x1) → 1024|element 8 LoC - 2 LoC 0 LoC 2 LoC

Figure 3: The fast focus on structures flow, using
a 1024x1024 pixel input image with a 10x10 grid of
LED-structures present.

quently: (1) Otsu thresholding, (2) erosion, and (3) projec-
tion. A flow chart is shown in figure 3, in which the individ-
ual image processing primitives are shown. In this figure, 6
primitives are considered targets for GPU acceleration.

The fast focus on structures application is slightly modi-
fied in order to create more class diversity in two ways: 1) a
1D erosion kernel applied to a 1D input array is added, and
2), a second maximum primitive is introduced, which works
on a significantly larger array compared to the original. The
new total of 8 primitives found in the extended fast focus on
structures application are classified as shown in table 4.

5.2 Comparing different targets for Bones
Bones supports three different targets. In this section we

present the performance numbers for the three targets com-
pared to single-threaded non-optimized reference C-code.
This comparison is made to demonstrate the benefits of ac-
celerating code using OpenCL or CUDA. The reference code
is annotated with directives determining the class of each of
the primitives. The same annotated code is used to generate
code for three different targets using Bones: gpu-nvidia (ex-
ecuted on the GTX470), gpu-amd (executed on the HD5850)
and cpu-opencl (executed on the Core-i7). The resulting
performance numbers are given in figure 4. In this figure,
we do not show timing results for the max-1 primitive. Its
execution time is very small, resulting in normalized exe-
cution times higher than 10x for the OpenCL and CUDA
implementations due to the kernel launch time overheads.
Also, no results are shown for the histo primitive for the
gpu-amd and cpu-opencl targets. This is because no skele-
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Figure 4: Normalized execution time of the 8 prim-
itives with respect to the single-threaded reference
C-code. Both the kernel execution time and the
memory transfer time are measured.

ton has been implemented yet for the corresponding class.
We observe from figure 4 that accelerating using a GPU

yields a significant performance increase for most of the
cases, especially when considering only the kernel execu-
tion times. Even without using additional hardware, the
OpenCL code running on the CPU provides a performance
increase over the reference C implementation in all cases,
benefiting from multi-threading.

5.3 Bones compared to others
To give an idea how Bones behaves compared to other C-

to-CUDA tools, we compare the performance of hiCUDA,
SkePU, PGI Accelerator and Par4All with Bones for the 8
primitives. The tested code is thoroughly optimized, where
necessary with help of the tool’s support team.

Firstly, we show the total normalized execution time of the
8 primitives for the five different tools in figure 5. In this
figure, we divide the total execution time in three parts: 1)
GPU kernel execution time, 2) CPU-GPU and GPU-CPU
memory transfer time, and 3) other, including overheads for
using the different tools. Secondly, we show an enlarged
view of the GPU kernel execution time in figure 6. Finally,
we present in table 4 the number of lines of code (LoC) that
were changed or added to the primitives to achieve these
measurements. Before discussing the results, we make a few
remarks regarding figures 5-6 and table 4:

• The tested real-life application is chosen to contain a
high diversity of image processing primitives. How-
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Figure 5: Normalized execution time of the 8 prim-
itives with respect to Bones. All measurements are
performed on the GTX470 GPU using CUDA 4.1.

ever, this does not mean that the presented results in
this work are necessarily representative for other ap-
plications.

• The amount of required code changes in table 4 is
merely presented as an indication of the required ef-
fort: the information density per line might vary.

• We consider the performance of the kernel itself as the
most important metric to compare. The performance
of the memory transfers might be relevant for individ-
ual kernels, but might be less relevant for larger ap-
plications. In some applications with multiple sequen-
tial GPU kernels, intermediate memory copies can be
omitted.

From the results as shown in figures 5-6 and table 4, we
observe the following:

• In a few cases no result could be obtained for hiCUDA,
SkePU and Par4All. Currently, hiCUDA does not sup-
port reduction operations, whereas Par4All has limited
support for such operations but is unable to generate
code for the max-1 and max-2 primitives. SkePU does
not provide a skeleton for primitives such as histo and
yproj. Furthermore, SkePU does not support non-
separable 2D filters, such as eros1. In this case how-
ever, we do assume the filter to be separable in order
to obtain a performance measurement.

• hiCUDA and PGI Accelerator show an increased ker-
nel execution time for the histo primitive. Due to the
inter-loop dependencies of the algorithm, the C-code
had to be rewritten for these tools. The execution time
is one order of magnitude higher compared to Bones’s
skeleton implementation, which uses a generalized ver-
sion of the algorithm presented in [17].

• SkePU shows a large ‘other’-bar in figure 5. This is
due to the CPU-CPU memory copies required to copy
input and output data to and from the SkePU contain-
ers. This overhead is non-existent if an application is
written entirely using these containers.

From figure 6 we can see that Bones achieves the best GPU
kernel performance in most cases. This is no surprise, as the
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Figure 6: Normalized execution time of the 8 GPU
kernels on the GTX470 GPU with respect to Bones.
This figure is the kernel-only version of figure 5.

skeletons are heavily optimized for the specific classes. We
also see that other tools perform reasonably well, especially
in the basic cases such as thres and eros2. However, in
the more complicated cases such as max-2 and xproj, the
other tools lose a factor 2-4 compared to Bones. In the case
of the xproj algorithm for hiCUDA, we acknowledge that
execution time can be reduced by limiting the amount of
uncoalesced accesses. Since this involves manual loop tiling
and the creation of a local data copy, we have chosen not to
include this in our evaluation.

If we compare the performance for the primitives includ-
ing memory transfer (figure 5), we see a smaller difference
between the different tools. In most cases, memory transfer
is the bottleneck. By chaining multiple primitives together,
as done in the fast focus on structures application, inter-
mediate memory copies can be omitted. SkePU supports
lazy copying, which automatically reduces the number of
memory transfers. Similar, Par4All uses an optimization
algorithm [1] to reduce CPU-GPU communication. In the
case of hiCUDA, reducing memory copies can be achieved
manually by omitting certain directives. Bones and PGI
Accelerator will always perform CPU-GPU and GPU-CPU
copies, but they both allow the generated code to be edited
to disable these intermediate copies.

6. CONCLUSION
In this work, we discussed four existing C-to-CUDA tools

and introduced Bones, a new source-to-source compiler. The
total of five tools were compared to each other in a head-to-
head performance comparison for a set of 8 example image
processing kernels. Bones is based on algorithmic skeletons
and uses a modular and parameterisable algorithm classifi-
cation which is introduced in this work. We conclude that
Bones requires little modifications to the original source
code, generates readable target code for further fine-tuning,
and delivers superior performance in most cases compared
to four existing tools for the example kernels.

We conclude that the other discussed tools (hiCUDA,
SkePU, PGI Accelerator and Par4All) generate competi-
tive code in a number of example cases. Especially PGI
Accelerator and Par4All are promising, since the required
input from the user is little or non-existent. Tools such as
hiCUDA and SkePU do deliver competitive performance in



some cases, but require many code changes and/or additions,
some of which are non-trivial. We furthermore believe that
the practical applicability of tools such as hiCUDA, SkePU
and PGI Accelerator is limited because further fine-tuning
of the generated code is not feasible, either because the code
is not available or difficult to read. With Bones, program-
mers are able to easily generate high performance CUDA
or OpenCL code, while still being able to perform further
fine-tuning if desired.

In this work, we have shown the potential of Bones for a
limited number of examples. In future work, we aim to im-
prove the practical usability of Bones by implementing more
skeletons, fine-tuning existing skeletons, adding support for
kernel fusion, and implementing a debug mode to check for
correctness. Furthermore, in separate work, we focus on
identifying algorithm classes from the source code using the
polyhedral model, making it possible to fully automatically
generate high performance target code using Bones.
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[2] S. Baghdadi, A. Größlinger, and A. Cohen. Putting
Automatic Polyhedral Compilation for GPGPU to
Work. In CPC ’10: 15th Workshop on Compilers for
Parallel Computers, 2010.

[3] M. Baskaran, J. Ramanujam, and P. Sadayappan.
Automatic C-to-CUDA Code Generation for Affine
Programs. In CC ’10: 19th International Conference
on Compiler Construction. Springer Berlin, 2010.

[4] W. Caarls, P. Jonker, and H. Corporaal. Algorithmic
Skeletons for Stream Programming in Embedded
Heterogeneous Parallel Image Processing Applications.
In IPDPS ’06: 20th International Parallel and
Distributed Processing Symposium. IEEE, 2006.

[5] D. K. G. Campbell. Towards the Classification of
Algorithmic Skeletons. Technical Report YCS 276,
University of York, 1996.

[6] B. Catanzaro, A. Fox, K. Keutzer, D. Patterson, B.-Y.
Su, M. Snir, K. Olukotun, P. Hanrahan, and H. Chafi.
Ubiquitous Parallel Computing from Berkeley, Illinois,
and Stanford. IEEE Micro, 30:41–55, March 2010.

[7] M. Cole. Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation. MIT Press, 1991.

[8] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A Hybrid
Multi-core Parallel Programming Environment. In
GPGPU-1: 1st Workshop on General Purpose
Processing on Graphics Processing Units, 2007.

[9] J. Enmyren and C. W. Kessler. SkePU: a
Multi-backend Skeleton Programming Library for

Multi-GPU Systems. In HLPP ’10: Fourth
International Workshop on High-level Parallel
Programming and Applications. ACM, 2010.

[10] T. Han and T. Abdelrahman. hiCUDA: High-Level
GPGPU Programming. IEEE Transactions on
Parallel and Distributed Systems, 22:78 –90, Jan 2011.

[11] Y. He, Z. Ye, D. She, B. Mesman, and H. Corporaal.
Feasibility Analysis of Ultra High Frame Rate Visual
Servoing on FPGA and SIMD Processor. In ACIVS
’11: Advanced Concepts for Intelligent Vision
Systems. Springer Berlin, 2011.

[12] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland,
and D. Glasco. GPUs and the Future of Parallel
Computing. IEEE Micro, 31:7–17, September 2011.

[13] S. Lee and R. Eigenmann. OpenMPC: Extended
OpenMP Programming and Tuning for GPUs. In SC
’10: Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2010.

[14] G. Noaje, C. Jaillet, and M. a. Krajecki. Source-to-
Source Code Translator: OpenMP C to CUDA. In
HPCC: 13th International Conference on High Perfor-
mance Computing and Communications. IEEE, 2011.

[15] C. Nugteren and H. Corporaal. A Modular and
Parameterisable Classification of Algorithms.
Technical Report No. ESR-2011-02, Eindhoven
University of Technology, 2011.

[16] C. Nugteren, H. Corporaal, and B. Mesman.
Skeleton-based Automatic Parallelization of Image
Processing Algorithms for GPUs. In SAMOS XI:
International Conference on Embedded Computer
Systems. IEEE, 2011.

[17] C. Nugteren, G.-J. van den Braak, H. Corporaal, and
B. Mesman. High Performance Predictable
Histogramming on GPUs: Exploring and Evaluating
Algorithm Trade-offs. In GPGPU-4: 4th Workshop on
General Purpose Processing on Graphics Processing
Units. ACM, 2011.

[18] S. Sato and H. Iwasaki. A Skeletal Parallel Framework
with Fusion Optimizer for GPGPU Programming. In
APLAS ’09: 7th Asian Symposium on Programming
Languages and Systems. Springer Berlin, 2009.

[19] F. Seinstra, D. Koelma, and J. Geusebroek. A Soft-
ware Architecture for User Transparent Parallel Image
Processing. Parallel Computing, 28:967 – 993, 2002.

[20] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A
Portable Skeleton Library for High-Level GPU
Programming. In IPDPSW ’11: International
Symposium on Parallel and Distributed Processing
Workshops and PhD Forum. IEEE, 2011.

[21] S.-Z. Ueng, M. Lathara, S. Baghsorkhi, and W.-m.
Hwu. CUDA-Lite: Reducing GPU Programming
Complexity. In LCPC ’08: 21th International
Workshop on Languages and Compilers for Parallel
Computing. Springer Berlin, 2008.

[22] D. Unat, X. Cai, and S. B. Baden. Mint: Realizing
CUDA Performance in 3D Stencil Methods with
Annotated C. In ICS ’11: International Conference on
Supercomputing, 2011.

[23] M. Wolfe. Implementing the PGI Accelerator model.
In GPGPU-3: 3rd Workshop on General Purpose
Processing on Graphics Processing Units. ACM, 2010.


