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Abstract

Multi-core and many-core were already major trends for the past six years, and are
expected to continue for the next decades. With this trend of parallel computing, it
becomes increasingly difficult to decide on which architecture to run a certain applica-
tion or algorithm. Additionally, it brings forth the problem of parallel programming,
leading to the so-called software engineering crisis.

In this work we present a new algorithm classification. This algorithm classifi-
cation is designed for programmers and tools to capture and reason about parallel
algorithms. The classification is initially intended to be used to address two challenges:
1) the challenge of parallel programming, and 2), performance prediction for parallel
and heterogeneous systems. In order to address these two challenges, we introduce
a new algorithm classification in this work. The classification uses a limited vocabu-
lary and a well-defined grammar, creating a modular classification. Additionally, the
classification is parameterisable. Both the modularity and the parameterisability of
the algorithm classification make it possible to enable a very fine-grained and widely
applicable classification.

We furthermore illustrate the new algorithm classification by classifying a number
of example algorithms from the field of image processing. We also show a number of
code snippets to give an intuitive feel for the classification.
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1 Introduction

The past five decades have shown an exponential growth of single-processor performance.
This exponential growth has enabled technology to become pervasive and ubiquitous in
our society. A few years ago, in 2004, this exponential growth has ended. The growth of
single-processor performance is limited by two major aspects: 1) it has become unfeasible to
increase clock frequencies because of power dissipation problems, and 2), micro-architecture
improvements have seen an increasingly lower impact [9]. To re-enable performance growth,
parallelism is exploited. Enabled by Moore’s law, more processors per chip (i.e. multi-core)
was already a major trend for the past six years, and is expected to continue for the next
decade [6].

While multi-core is expected to enable 100-core processors by 2020 [6], another trend
already enables more than 2000 cores. This trend (many-core) uses much simpler and
smaller processing cores, creating high throughput parallel processors. An example of such a
many-core processor is the Graphics Processing Unit (GPU). Although many-core processors
might be suitable for a certain type of application, other applications might prefer multi-core
processors. This creates a heterogeneous environment, with both types of processors in one
system or even on a single chip (e.g. NVIDIA’s Project Denver, AMD’s Fusion).

We identify two major challenges that come with these new trends of parallel and het-
erogeneous computing. The first challenge is programmability: a recent study [12] lists pro-
grammability of heterogeneous and parallel processors as a major research challenge. The
second challenge is related to performance prediction: how to select a suitable processor for
an application prior to code development?

In this work we introduce a new algorithm classification to be able to reason about
parallelism in applications. This classification is intended to be used in separate work
to address the challenges of programming and performance prediction in a parallel and
heterogeneous computing environment. The new classification is therefore focused on the
automated use in compilers and tools in particular. The classification uses modularity
and parameters to solve the granularity trade-off: it enables a fine-grained classification of
algorithms while using a limited vocabulary. This work is focused on the domains of image
processing and computer vision, but we believe that the concepts of the classification can
be extended to other domains as well.

The remainder of this document is organized as follows. Firstly, we discuss related work
on algorithm classifications and motivate the development of a new classification in section 2.
Then, in section 3, we introduce the new classification formally. We show a number of
example classes and code snippets in section 4. Following, we evaluate the classification in
section 5. We briefly give an overview of two applications of the classification in section 6.
Finally, we discuss future work and conclude the work in section 7.
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2 Related work and motivation

In this section we present related work on algorithm classifications. Algorithm classifica-
tions exist in different forms, with different names and for different purposes. We discuss
classifications intended to be used with the algorithmic skeletons technique [7] separately
from other classifications, as they show many similarities with our algorithm classification.
While discussing the existing classifications, we motivate the development of a new algorithm
classification.

2.1 Classes, patterns and idioms

A number of algorithm classification are introduced as a scheme to capture solutions for
recurring design problems in systematic and general ways. These classes are typically not
used in automated tools, but are rather used to discuss and reason about design problems.
They are in general very coarse-grained and spawn across multiple application domains.
Examples of such algorithm classifications are the dwarfs and computational patterns devel-
oped in the ParLab research group [2]. A hierarchical set of design patterns [13] was later
introduced to reason about design problems at various granularity levels.

Algorithm classifications have also been developed to be used by tools and compilers. An
example is the use of idioms to classify algorithms. Idioms have been used to automatically
classify C-code [16] and to predict performance of complete applications [5]. The idioms
as introduced in [5] are very limited in number and are still not as fine-grained as the
classification we introduce in this work.

In other work we see that algorithms are classified for the purpose of algorithmic choice.
In such cases, it is important to capture the functionality of the algorithms in the classes
rather than memory access behaviour as is done in our work. Examples of classifications
introduced to enable algorithmic choice are [1] and [11].

2.2 Classifications used with algorithmic skeletons

Many variations of algorithm classifications have been introduced as part of work on the
algorithmic skeletons technique [7], which is used for code generation purposes. There is a
great body of work in this area, most of which introduces their own algorithm classification
as part of research on algorithmic skeletons. In a survey of algorithm classification for
algorithmic skeletons [4], a total of 10 different classifications are presented. On average
4 classes are included in these classifications, with divide and conquer, pipeline, and farm

being the most common among all 10 classifications. In comparison to these classifications,
we provide much finer-grained and detailed classes.

Other work on algorithmic skeletons introduces algorithm classifications highly related
to this work. Examples are [3], [8], [10] and [15]. In comparison to these works, we provide
more detail in our classes (key-enabler: parameters) and cover a large number of applications
while maintaining understandability (key-enabler: modularity).
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3 Algorithm classification

To address the challenges of parallel programming and performance prediction, we introduce
a new algorithm classification. In this section, we first give a small toy example, after which
we introduce the vocabulary and grammar of the classification.

3.1 Code examples

Before introducing the classification formally, we classify a number of example code snippets
to give an intuitive feel for the classification. The four examples as shown in listing 1 are
classified as follows:

• In lines 1-3 a vector of size K is element-wise multiplied, incremented, and stored
as another vector. Since every element of the input corresponds to an element of
the output and the vector size is K, we classify this code snippet as ‘K|element →
K|element’.

• The for-loop in lines 5-7 performs a similar operation, but now also requires two neigh-

bours to compute one output element. The classification becomes ‘K|neighbourhood(3)
→ K|element’, since the neighbourhood is of size 3 (including the element itself).

1 for ( i =0; i<K; i=i +1) { K| element → K| element
2 B[ i ] = 2 ∗ A[ i ] + 5 ;
3 }
4
5 for ( i =0; i<K; i=i +1) { K| neighbourhood (3 ) → K| element
6 B[ i ] = 0 .3∗A[ i −1] + 0 .4∗A[ i ] + 0 .3∗A[ i +1] ;
7 }
8
9 for ( a=0; a<10; a=a+1) { 10x10 | element → 10x10 | element

10 for (b=0; b<10; b=b+1) {
11 value = A[ a ] [ b ] ;
12 i f ( va lue > 255) {
13 value = 255 ;
14 }
15 B[ a ] [ b ] = value ;
16 }
17 }
18
19 for ( i =0; i<K; i=i +1) { K| element → 1 | shared
20 B = B + A[ i ] ;
21 }

Listing 1: Four example code snippets of different algorithm classes. The examples are
classified using the algorithm classification introduced in this work.
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• Similar to the code snippet in lines 1-3, the code in lines 9-17 performs an element to
element computation. However, in this case, we process two dimensional matrices of
size 10 by 10. The code is therefore classified as ‘10x10|element → 10x10|element’.

• The final snippet (lines 19-21) processes the input per element, but stores the result
in a shared output. It is therefore classified as ‘K|element → 1|shared’, with 1 being
the size of the output.

3.2 Vocabulary and grammar

The classification consists of both a grammar and a vocabulary. In this section, we formally
define the algorithm classification by first introducing the grammar and the vocabulary.
Following, we introduce the meaning of the algorithm classification.

Algorithm classes can be described using a vocabulary and a grammar. The classifica-
tion’s grammar is defined as follows:

P S|D [∧ S|D]
∗

→ S|D [∧ S|D]
∗

In this definition, the asterisk symbol (∗) implies zero or more occurrences of everything con-
tained by brackets preceding the asterisk. Entries for P , S and D need to be replaced by the
classification’s vocabulary. Combinations of S|D represent input and output data-structures,
in which S represents a dimension and D represents a data structure. Furthermore, P repre-
sents a prefix applicable to the whole algorithm class. The prefix P , data access patterns D

and dimensions S need to be replaced using the algorithm classification’s vocabulary, which
is defined as follows:

P =

(

unordered
multiple

)

S =









A
AxB
...

Ax...xN









D =













element
tile (S)

neighbourhood (S)
shared

full













The algorithm classification distinguishes input from output data structures through
the arrow (→). Data structures preceding the arrow are considered input data structures,
while data structures listed after the arrow are output data structures. Furthermore, when
multiple data structures are present as input or output, the wedge operator (∧) separates
these data structures. For example, the class ‘S|D ∧ S|D → S|D’ contains two input data
structures and one output data structure. The dimensions of the data structures are given
by S, which defines both the number of dimensions and the size of each dimension. Sizes
are separated by an ‘x’. For example, ‘10x25x3’ defines a 3-dimensional data structure with
sizes of respectively 10, 25 and 3.

The data structure D itself is characterized by its data access patterns. We provide
a graphical comparison between the access patterns element, tile and neighbourhood in
figure 1. The five different patterns which are part of the classification’s vocabulary are
defined as follows:

element: The element access pattern represents a single access of a data structure’s con-
tents at each coordinate in the structure. Accesses to individual elements of the data
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structure are assumed to be independent of each other. The amount of parallelism for
this pattern is therefore equal to the size of the data structure.

tile(T): When accessing data in a tile pattern, a structure of dimensions T is accessed
simultaneously, but independent of other tiles in the same data structure. There is no
data re-use, all contents are accessed once. The parallelism present within this pattern
is equal to the size of the data structure divided by the tile size.

neighbourhood(N): The neighbourhood access pattern is similar to the element pattern,
but enables overlap. The pattern describes the re-use of a data structure’s contents for
a neighbourhood of dimensions N centered around each coordinate of the structure.
This data access pattern is to be used as input pattern only.

shared: The shared data access pattern is an output only pattern. It is used when multiple
accesses occur to contents at a single coordinate in a data structure. The pattern also
enables reading from the output at the same coordinate.

full: The full access pattern accesses the complete data structure. This implies that no
parallelism is available. This pattern is equal to the use of the tile pattern with a tile
size equal to the data structure’s size.

For each set of accesses to a data structure’s contents according to the patterns, an operation
needs to be performed to produce output from the input. This operation is given by the
function f(), which is introduced as part of the classification. For example, if the algorithm
class is equal to ‘K|element → K|tile(2)’, then f() defines the operation required to produce
two output elements from one input element.

Figure 1: An illustration of the differences of the element, tile and neighbourhood patterns.

In addition, the classification provides the two prefixes P , which can be placed in front
of an algorithm class. The two prefixes are defined as follows:

unordered: In general, the relation between the input and output patterns is based on
a one to one coordinate mapping. The use of the unordered prefix implies that any
coordinate mapping can be used, e.g. a scattered or reverse mapping.

multiple: The shared pattern assumes a single access only to the shared data structure.
When more than one output is written by the operator f() for the shared pattern, the
multiple prefix can be used.
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4 Illustrating the algorithm classification by example

In this section we illustrate the presented algorithm classification in three ways. Firstly, we
present a number of example classes and show their formal meaning. Then, we classify a
number of example elementary algorithms from the field of image processing. Finally, we
classify a number of code snippets according to the presented classification.

4.1 Example classes and their formal notations

In this section we present a number of example classes to illustrate the use of the classifica-
tion’s vocabulary and grammar. We describe the meaning of each example class in natural
language, but also give a formal description of the class. To do so, we first define a number
of notations.

The following notations are used in this section: 1) Xi, Y i and Zi represent i-dimensional
data structures, 2) Xi

d
denotes the contents of a data structure Xi at coordinate d, and 3),

k gives the natural numbers: k ∈ N. Furthermore, to represent coordinates in example data
structures, we define a number of coordinate ranges. The coordinate ranges have varying
sizes (e.g. UxV) and represent different parts of a data structure (e.g. a 2D-tile). They are
given as follows:

AxB (matrix) D = {(x, y) | 0 ≤ x < A ∧ 0 ≤ y < B}
UxV (2D-tile) T = {(x, y) | 0 ≤ x < U ∧ 0 ≤ y < V }
B (1D-tile) T ′ = {(x, y) | 0 ≤ x < B ∧ y = 0}
NxM (2D-neighbourhood) N = {(x, y) | − (N−1

2
) ≤ x ≤ (N−1

2
) ∧ −(M−1

2
) ≤ y ≤ (M−1

2
)}

N (1D-neighbourhood) N ′ = {(x, y) | − (N−1

2
) ≤ x ≤ (N−1

2
) ∧ y = 0}

C (vector) V = {(x) | 0 ≤ x < C}

Using the introduced notation, we give a number of example classes in table 1. In this
table we give a formal notation for each class. We also give a description of the different
classes in natural language:

AxB|element → AxB|element: This example class implies that for each data element in
the input data structure of size AxB one data element at a corresponding coordinate
in the output data structure is produced by the operator f(). These operations and
accesses are independent of each other and can thus be done in parallel.

unordered AxB|element → AxB|element: Similar to the previous class, elements are
accessed and produced element-wise. However, in this case, the coordinate relation is
unknown. Elements might for example be written in inverse or pseudo random order.
Still, each input and output element will only be accessed once.

AxB|tile(1xB) → A|element: For this class the input data structure is not accessed
element-wise, but tile-wise. The tile size is equal to one column of the input ma-
trix, producing only A output elements. The operator f() accesses B input elements
and produces one output element. This results in a reduction of a matrix of size AxB
into a vector of length A. There is no data re-use and a maximum parallelism of A.
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example class formal notation

AxB|element → AxB|element ∀d ∈ D :
f

`

X2
d

´

→ Y 2
d

unordered AxB|element → AxB|element ∀d ∈ D ∃d′ ∈ D :
f

`

X2
d

´

→ Y 2
d′

AxB|tile(1xB) → A|element ∀d ∈ D | d = k · T ′ :
f

`

∀t′ ∈ T ′
`

X2
d+t′

´´

→ Y 2
c | c = dx

AxB|tile(UxV) → A
U

xB
V
|element ∀d ∈ D | dx = k · U ∧ dy = k · V :

f
`

∀t ∈ T
`

X2
d+t

´´

→ Y 2
c | c = ( dx

U
,

dy

V
)

AxB|tile(UxV) → AxB|tile(UxV) ∀d ∈ D | dx = k · U ∧ dy = k · V :
f

`

∀t ∈ T
`

X2
d+t

´´

→ ∀t ∈ T
`

X2
d+t

´

AxB|element → A·UxB·V|tile(UxV) ∀d ∈ D :
f

`

X2
d

´

→ ∀t ∈ T
`

X2
c+t | c = (dx · U, dy · V )

´

AxB|neighbourhood(NxM) → AxB|element ∀d ∈ D :
f

`

∀n ∈ N
`

X2
d+n

´´

→ Y 2
d

AxB|neighbourhood(N) → AxB|element ∀d ∈ D :
f

`

∀n′ ∈ N ′
`

X2
d+n′

´´

→ Y 2
d

AxB|element → 1|shared ∀d ∈ D :
f

`

X2
d, Y 0

´

→ Y 0

AxB|element → C|shared ∀d ∈ D ∃v ∈ V :
f

`

X2
d, Y 1

v

´

→ Y 1
v

multiple AxB|element → C|shared ∀d ∈ D :
f

`

X2
d, ∀v ∈ V

`

Y 1
v

´´

→ ∀v ∈ V
`

Y 1
v

´

AxB|element ∧ AxB|element → AxB|element ∀d ∈ D :
f

`

X2
d, Y 2

d

´

→ Z2
d

AxB|element ∧ AxB|full → AxB|element ∀d ∈ D :
f

`

X2
d, ∀d′ ∈ D

`

Y 2
d′

´´

→ Z2
d

Table 1: A number of example algorithm classes and their corresponding formal definition.

AxB|tile(UxV) → A

U
xB

V
|element: Similar to the previously discussed class, the operator

f() accesses a tile and produces one element. However, in this case the tile is 2-
dimensional and of size UxV. This operation results in a reduction in size of the
input matrix by a factor UxV. Individual tiles do not overlap and can be processed
independently of each other.

AxB|tile(UxV) → AxB|tile(UxV): This class is similar to the previous tile-based classes.
However, in this case, the operator f() produces a tile as an output as well. The input
and output data structures are of the same size since the tiles of the input and output
are of the same size.

AxB|element → A·UxB·V|tile(UxV): For this class the operator f() accesses individual
elements from the input data structure and produces tiles in the output structure. This
results in an increase of the matrix dimensions by a factor UxV.

AxB|neighbourhood(NxM) → AxB|element: This neighbourhood-based class is sim-
ilar to the first discussed class, because the data structures are accessed element-wise.
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However, in contrast to the access of a single element, a surrounding neighbourhood
NxM of elements is accessed by the operator f(). In contrast to the tile-based classes
there is overlap and thus data re-use in this class. This also implies that the input and
output data structure are of the same size.

AxB|neighbourhood(N) → AxB|element: This class is similar to the previous class,
but now accesses a 1-dimensional neighbourhood instead of a 2-dimensional. Since
only a single dimension given, the neighbourhood is taken in the first dimension (cor-
responding to the size A of the input data structure).

AxB|element → 1|shared: For this class the input is accessed element-wise as seen before.
However, the output data structure, which consists of a single element in this case, is
shared among each operation performed by f(). The operator f() might even access
the previous value of the output data structure as input, for example to perform
accumulation.

AxB|element → C|shared: This class is similar to the previous class. The difference is
found in the fact that the shared output is now a vector. The output coordinate
accessed by the operator f() is undefined for the class.

multiple AxB|element → C|shared: With the addition of the multiple prefix, this class
enables the production of multiple output elements by the operator f(). As for the
previous class, the output data structure is shared and the coordinates accessed are
undefined.

AxB|element ∧ AxB|element → AxB|element: Very similar to the first class, this class
performs an element-wise computation. However, now, two elements from two different
data structures are accessed as inputs to the operator f().

AxB|element ∧ AxB|full → AxB|element: This class also takes two input data struc-
tures and produces one output data structure. However, the second data structure
can now be accessed entirely each time the operator f() accesses one element from the
first input and produces a single output element. In this case the size of the second
input is equal to the sizes of the other data structures.

4.2 Classification of example algorithms

Related to the example classes in table 1, we list a number of elementary algorithms from
the domains of image processing and computer vision in table 2. Many of these elementary
algorithms are building blocks for larger algorithms or applications. We take four algorithms
from table 2 and explain their classification:

• We classify the algorithm contrast enhancement as ‘AxB|element → AxB|element’,
in which A and B represent the x and y-dimensions of the input and output image.
The algorithm iterates over all the elements of the input image, each time producing
one output element. The structure of the algorithm therefore resembles the example
given in lines 9-17 of listing 1, but performs a different computation (lines 12-14).
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• For the algorithm rotate 90 degrees, we rotate an image clockwise. We classify this
algorithm as ‘unordered AxB|element → AxB|element’, since the coordinate relation
between the input and output is not one-to-one, but involves a rotation. Still, as for
the previous example algorithm, an element-wise operation is performed.

• The algorithm pixelization is classified as ‘AxB|tile(UxV) → AxB|tile(UxV)’. First,
an operation is performed per tile on the input image, resulting in a fewer number of
intermediate values. These intermediate values are then written multiple times into a
tile of the output image, resulting in an output image of the same dimensions as the
input.

• A large number of 2D convolution filters can be separated into a sequence of two 1D
filters. We classify each part of a separable 2D filter as a 1-dimensional neighbour-
hood operation on a 2-dimensional image: ‘AxB|neighbourhood(N) → AxB|element’.

class example algorithms

AxB|element → AxB|element image copy
binarization
colour transformation
gamma correction
contrast enhancement
arithmetic & logic (monadic)

unordered AxB|element → AxB|element rotate 90 degrees
xy-mirroring
rotate (forward warping, no interpolation)
shear-x (forward warping, no interpolation)

AxB|tile(1xB) → A|element column-projection
AxB|tile(UxV) → A

U
xB

V
|element scale down

AxB|tile(UxV) → AxB|tile(UxV) 2D type II discrete cosine transform
pixelization
adaptive binarization (alternative 1)

AxB|element → A·UxB·V|tile(UxV) enlarge
AxB|neighbourhood(NxM) → AxB|element convolution (static filter)

adaptive binarization (alternative 2)
erosion/dilation

AxB|neighbourhood(N) → AxB|element separable 2D filter (in one dimension)
1D convolution

AxB|element → 1|shared sum
min/max

AxB|element → C|shared histogram
AxB|element ∧ AxB|element → AxB|element differencing

arithmetic & logic (dyadic)

Table 2: The classification of example algorithms from the domain of image processing and
computer vision. The classes are taken from the example classes which are formally defined
in table 1.
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4.3 Classification of code snippets

We furthermore classify a number of code snippets. The classes along with the code snippets
are shown in listings 2-5. The examples are grouped as: element-based (listing 2), shared-
based (listing 3), neighbourhood-based (listing 4), and tile-based (listing 5).

1 100x16 | element → 100x16 | element
2 for ( i =0; i <100; i=i +1)
3 for ( j =0; j <16; j=j +1)
4 B[ i ] [ j ] = 2∗A[ i ] [ j ] ;
5

6 unordered 4x8 | element → 4x8 | element
7 for ( i =0; i <4; i=i +1)
8 for ( j =0; j <8; j=j +1)
9 B[ i ] [ j ] = A[ i ] [7− j ] ;

10

11 64 | element → 64 | element
12 for ( i =0; i <64; i=i +1)
13 temp = 3 ;
14 for ( t=0; t <8; t=t+1)
15 temp = temp ∗ A[ i ] ;
16 B[ i ] = cos ( temp) ;
17

18 8 | element + 8 | element → 8 | element
19 for ( i =0; i <8; i=i +1)
20 C[ i ] = 2∗A[ i ] + B[ i ] ;

Listing 2: Element-based classes.

1 16x48 | element → 1 | shared
2 for ( i =0; i <16; i=i +1)
3 for ( j =0; j <48; j=j +1)
4 B = B + 2∗A[ i ] [ j ] ;
5

6 16x48 | element → 5x5 | shared
7 for ( i =0; i <16; i=i +1)
8 for ( j =0; j <48; j=j +1)
9 in = A[ i ] [ j ] ;

10 B[ i %5][ j %5] = B[ i %5][ j %5] + in ;
11

12 16x48 | element → 12 | shared
13 for ( i =0; i <16; i=i +1)
14 for ( j =0; j <48; j=j +1)
15 value = A[ i ] [ j ] ;
16 B[ va lue ] = B[ value ] + i ;
17

18 mul t ip l e 50 | element → 100 | shared
19 for ( i =0; i <50; i=i +1)
20 value = A[ i ] ;
21 B[ va lue ] = B[ value ] + i ;
22 B[ va lue ∗3 ] = B[ value ∗3 ] + 1 ;

Listing 3: Shared-based classes.

1 32x32 | neighb . ( 3 x3 ) → 32x32 | element
2 for ( i =0; i <32; i=i +1)
3 for ( j =0; j <32; j=j +1)
4 avg = 0 ;
5 for ( a=−1;a<=1;a=a+1)
6 for (b=−1;b<=1;b=b+1)
7 avg = avg + A[ i+a ] [ j+b ] ;
8 B[ i ] [ j ] = avg / 9 ;
9

10 300 | neighb . ( 3 ) → 300 | element
11 for ( i =0; i <300; i=i +1)
12 B[ i ] = 2∗A[ i −1]+4∗A[ i ]+2∗A[ i +1] ;

Listing 4: Neighbourhood-based classes.

1 50x10 | t i l e (1 x10 ) → 50 | element
2 for ( i =0; i <50; i=i +1)
3 r e s u l t = 0 ;
4 for ( j =0; j <10; j=j +1)
5 r e s u l t = r e s u l t + j ∗ A[ i ] [ j ] ;
6 B[ i ] = r e s u l t ;
7

8 100x100 | t i l e (2 x2 ) → 50x50 | element
9 for ( i =0; i <50; i=i +1)

10 for ( j =0; j <50; j=j +1)
11 out = 0 ;
12 for ( a=0;a<2;a=a+1)
13 for (b=0;b<2;b=b+1)
14 out = out ∗ A[2∗ i+a ] [ 2 ∗ j+b ] ;
15 B[ i ] [ j ] = out ;
16

17 50 | t i l e (5 ) → 50 | t i l e (5 )
18 for ( i =0; i <10; i=i +1)
19 r e s u l t = 0 ;
20 for ( a=0;a<5;a=a+1)
21 i f (A[5∗ i+a ] > 12)
22 r e s u l t = r e s u l t + 3 ;
23 for ( a=0;a<5;a=a+1)
24 B[5∗ i+a ] = r e s u l t ;
25

26 32 | element → 128 | t i l e (4 )
27 for ( i =0; i <32; i=i +1)
28 value = A[ i ] ;
29 for ( a=0;a<4;a=a+1)
30 B[4∗ i+a ] = value ;

Listing 5: Tile-based classes.
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5 Evaluation of the classification

In this work we presented a new algorithm classification. In this section, we briefly com-
pare the classification to existing work and discuss a number of difficult and ambiguous
classification problems. Prior to that, we evaluate the presented algorithm classification
on three important aspects: 1) completeness, 2) abstraction level or granularity, and 3),
understandability:

completeness: The presented classification is not proven to be complete. Nevertheless,
we have shown that a significant amount of example algorithms and code snippets
can be classified under the presented classification. Larger algorithms or complete
applications can be split up to enable the classification of separate smaller algorithms.
Furthermore, the classification’s modularity enables the support for any number and
type of input and output data structures.

abstraction level: The classification uses parameters to achieve a very fine-grained clas-
sification which includes a high level of detail. Apart from parameters added to the
data structures itself, we also add parameters for neighbourhood-sizes and tile-sizes.

understandability: In order to create an understandable and fine-grained classification
at the same time, we introduced a classification grammar with a limited vocabulary.
The data structure patterns used in the vocabulary are very limited, decreasing the
threshold to familiarize with the classification. Additionally, the vocabulary is closely
related to jargon used in the domains of image processing and computer vision, which
suggests ease of adaptability.

5.1 Comparison with existing work

If we compare our algorithm classification with existing classification as discussed in sec-
tion 2, we find a number of differences. First of all, we find that our classification is
much more fine grained, especially if we compare against patterns as presented in [2]
and [13]. But even if we compare our classification to the more finer-grained classifica-
tions ([3], [4], [8], [10], [15], and [16]), we find that we provide much more detail. This level
of detail is achieved through the introduction of parameters, which provides a manner to
distinguish different sizes and dimensions from each other - if needed. For example, we can
distinguish a large neighbourhood from a small neighbourhood, and we can identify between
the use of 1D and 2D tiles.

Apart from the finer granularity, we also improve upon existing classifications by in-
troducing a modular classification. With modularity, we do not have to define individual
classes, but can construct them using a given grammar and a limited vocabulary. This
contributes towards the completeness of the classification, making it possible to support any
number and combination of input and output data structures. Furthermore, our classifica-
tion is based on a well-defined grammar and vocabulary, while many existing classifications
are introduced less formally.
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5.2 Classification difficulties

In this section we discuss a number of difficult and ambiguous classification problems. These
discussions can be seen as responses to ‘how should I classify this algorithm’-problems.

classification ambiguities: Algorithms can sometimes be classified in multiple ways. An
example of this is matrix multiplication. We can express the algorithm as: one
row of the first matrix and all elements of the second matrix produces one row of the
output matrix. This is expressed as: ‘AxB|tile(1xB) ∧ BxC|full → AxC|tile(1xC)’. The
resulting class is conservative, as it does not capture all parallelism. We can solve this
by expressing the algorithm at a lower level: the classified code is now executed in a
loop over the number of rows (A) of the input and output matrices. The classification
of the inner part becomes: one row and one column produces one output element.
This is expressed as: ‘B|full ∧ BxC|tile(Bx1) → C|element’.

class combinations: In some cases multiple algorithm classes might be combined to create
a single class. An 8x8 pixelization on a 32x32 image for example can be classified
as a sequence of 32x32|tile(8x8) → 4x4|element and 4x4|element → 32x32|tile(8x8) or
as the single class 32x32|tile(8x8) → 32x32|tile(8x8). Which one of these solutions
to select depends on the implementation details and whether or not the intermediate
result is required.

classes as upper-bounds: Although classes pose restrictions on data accesses, it does not
mean that all accesses have to be performed for an algorithm to be classified under
a certain class. In this sense, classes can be seen as upper-bounds. For example,
an algorithm might still be classified as 8|element → 8|element, even if it does not
produce a result for the 5th element in the output data structure. Another example is
a neighbourhood-based class which uses only a subset of the neighbourhood for each
operation f().

less restricting classes: Irregular algorithms or algorithms with limited or no parallelism
can be classified under less restricting classes, such as ‘S|full → S|full’. In this way, a
classification can be found, but the parallelism expressed by the class might be lower
than the actual parallelism found in the algorithm.
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6 Applications of the algorithm classification

In this section, we briefly discuss two applications of the presented algorithm classification.
We discuss the applications of the classification to address both the challenges of program-
ming and performance prediction for multi-core and many-core processors. An overview of
the two approaches taken is shown in figure 2.

Figure 2: Using algorithm classes to address programmability challenges and to enable
performance prediction.

6.1 Parallel programming using the classification

A solution for the programmability challenge might be found in the use of algorithmic skele-
tons [7]. It has been applied to multi-core and many-core processors in other work, but,
although they show promising results, their tools have not been widely adopted by program-
mers yet. In contrast to existing work, we focus our research on the algorithm classification
itself. The result is the development of the ‘Bones’ source-to-source compiler. This compiler
is based on algorithmic skeletons and uses the presented algorithm classification. The work
is ongoing and currently generates high-performance CUDA and OpenCL code.

6.2 Performance prediction using the classification

We aim to develop a method to be able to choose a suitable processor for a given set of
applications without requiring to port any source code to the target processor candidates.
Thus, we need a method to enable performance prediction based on either the original source
code or on a textual description of the application. To achieve this, we have developed a
specific performance model for a specific algorithm class. Each of these models can be seen
as a refinement of the roofline model [18]. The new model, named the ‘boat hull model’ [14],
is based on the roofline model, but gives much tighter bounds on performance as it captures
class information. It is currently applicable to GPUs and CPUs and gives very valuable
predictions, even though no source code is required.
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7 Conclusions and future work

In this work we introduced a new modular and parameterisable algorithm classification. In
this section, we briefly discuss future work and conclude the current work.

7.1 Future work

As part of our work on the algorithm classification we plan to continue in two directions:

1. We aim to further fine-tune the presented algorithm classification. To do so, we plan to
validate the classification against the PolyBench benchmark suite [17]. Additionally,
we plan to validate the classification against a set of real-life applications.

2. We aim to automatically extract class information from source code. We plan to
develop a tool to analyze C-code and to annotate the source with identified classes.
The goal is similar to the work performed in [16] for a different classification.

7.2 Conclusions

In this work, we introduced a new algorithm classification which is designed for program-
mers and tools to capture and reason about parallel algorithms. We have shown a number
of example classes, algorithms and code snippets which illustrate the presented algorithm
classification. We have furthermore evaluated the classification on completeness, granularity
and understandability.

The presented classification is initially designed to be used to address two different chal-
lenges: 1) the challenge of parallel programming, and 2), performance prediction of parallel
and heterogeneous systems. The use of the classification for these and other purposes is left
for future work.

The algorithm classification we presented in this work uses a limited vocabulary and a
well-defined grammar, creating a modular classification. Additionally, the classification is
parameterisable. Both the modularity and the parameterisability of the algorithm classifica-
tion make it possible to achieve a very fine-grained but widely applicable classification while
maintaining understandability. Compared to existing work, our classification provides much
more detail, but also improves on completeness and understandability. It is furthermore
formally defined and illustrated through numerous examples.
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