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So where are the Matrix-Multiplications?
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GPU Forward Time Distribution

fc7

0.8%
fc6

0
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Photo by Anthony Catalano

in 1979, and until I started trying to opt]

from my friend Yangging Jia's thesis:

GPU Forward Time Distribution
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FKrizhevsky's Imagenet architecture. All
using GEMM, and almost all the time (4

conv3 norm2

0.5%

So what is GEMM? It stands for GEnd 17.8%
multiplies two input matrices together t
the 3D graphics world is that the matrig

the multiplication of a 256 row, 1,152 cGIUmmn mati® by an 1, 152 Tow, 192 COIUmn Matlx [0 produce a 2o6 tow, 192 Colurm Tesul.
WNaively, that requires 57 million (256 x 1,152, x 192) floating point operations and there can be dozens of these layers in »-madaen
architecture, so I often see networks that need several billion FLOPs to calculate a single frame. Here’s a diagram that I Ep Follow
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Convolutions as Matrix Multiplication

Input Image
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How GEMM works for Pﬂ:ﬂh P'ztch Patch 2

This seems like quite a specialized opera

but it's not clear how or why we should

here’s how the operation is expressed in|

The first step is to furn the input from aj im ECU I

each kernel is applied is a little three-dim &
copy them out as a single column into a -...$ \'h _::I-

function, and here's how I visualize it:
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GEMM is the Heart of Deep Learning
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taking the number of kernels dimension as the depth, and then splitting the patches back into rows and columns based on their original
position in the input image

‘Why GEMM works for Convolutions

Hopefully you can now see how you can express a convolutional layer as a matrix multiplication, but it's still not obwious why you would
doit. The s

e Why GEMM works for Convolutions

why they eg

batch up all

main competitor to the GEMM approach is using Fourier transforms to do the operation in frequency space, but the use of strides mn omr
convolutions makes 1t hard to be as efficient.

The good news is that having a single, well-understood function taking up most of our time gives a very clear path to optimizing for
speed and power usage, both with better software implementations and by tailoring the hardware to 1un the operation well Eecause deep
networks have proven to be useful for a massive range of apphcations across speech, NLP, and computer vision, I'm looking forward to
seelng massive Improvements over the next few years, much like the widespread demand for 3D games drowve a revolution in GPUs by

forcing a revolution in vertex and pixel processing operations.

(Updated to fix my incorrect matrix ordering in the diagrams, apologies to anyone who was confused!)

Share this:
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Does everyone agree?
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20 responses
htH]% ZYGMUNT says:
e - )
E A 0000, 2015 at 1226 p I 4 L‘ { FL]GL]T Sa}rs
1 ‘
b
4 :HE‘ Correct me if I'm wrong * *
kxim*nxk!=nxm | 1™ LaTa' ™
1* *} April 21, 2015 at 1053 am
Youneed
nxk*kim=nzm rj ' h. ) ) ) ) ) ) )
1 1 1
- MNice paper lughlighting the importance of high performance linear algebra
KART]
Jamuary 5, Z017 at 1:34 am
What you said is right. You need mxk * Jam to produce man. The figure also shows the same. Matrix dimentions are always
|no.of rows x no.of columns). So, as per the first diagram, the matrix dimensions are mxk and kan. So, you have what you
need to multiply.
ScOTT GRAY says REPLY
Apnl 21, 2015 at 6:55 am
I thought this might be a good place to outline my approach. You can find the numbers I'm getting here (NervanaSys):
httpsy// github.com’s oumith/ convnet-benchmarks
These are basically full utilization on the Maxwell GPU
I'luse parameters defined here:
https/ardv.org'pdff1410.0758 pdf
Soinstead of thinking of convolution as a problem of one large gemm operation, it's actually much more efficient as many small gemms. To
compute alarge gemm on a GPU you need to break it up into many small tiles anyway. So rather than waste time duplicating your datainto a
large matriz, you can just start doing small gemms right away directly on the data. Let the L2 cache do the duplication for you.
So each small matrix multiply is just one position of the filter over the image. The outer dims of this MM are IN and K and CES is reduced. To
load in the image data you youneed to slice the image as you are camrying out the reduction of outer products. This is most easily achieved if
1 is the contiguous dimension of your image data. This way a single pizel offset applies to a whole row of data and can be efficiently fetched
all at once. The best way to calculate that offset is to first build a small lackup table of all the spatial offsets. The channel offset ¢ E Follow  ses
T
after each lookup. This keeps your lookup table small and easy to fit in fast shared memory. -
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So instead of thinking of convelution as a problem of one large gemm operation, it’s actually much

Joad more efficient as many small gemms. To compute a large gemm on a GPU you need to break it up into
Mis
all af many small tiles anyway. So rather than waste fime duplicating your data into a large matrx, you can

just start doing small gemms night away directly on the data. Let the L2 cache do the duplication for

you.
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Still true in 20171

- = We gratefully acknowledge support
L@E,’% C()mell UmVQrSlty the Simons Found

. 1 and member institu

aer.org > cs > arXiv:1704.04428 Search or Article ID inside arXiv All papers Broaden your search using Semantic Scholar

(Help | Advanced search)

Computer Science > Computer Vision and Pattern Recognition .
Download:

Parallel Multi Channel Convolution using General Matrix Multiplication * PDF

e Other formats

(license)

Aravind Vasudevan, Andrew Anderson, David Gregg
Current browse context:

(Submitted on 6 Apr 2017)
cs.CV
Convolutional neural hetworks (CNNs) have emerged as one of the most successful machine learning technologies for < prev | next >
image and video processing. The most computationally intensive parts of CNNs are the convolutional layers, which new | recent | 1704

conhvolve multi-channel images with multiple kernels. A common approach to implementing convolutional layers is to

Change to browse by:
expand the image into a column matrix (im2col) and perform Multiple Channel Multiple Kernel (MCMK) convolution using

an existing parallel General Matrix Multiplication (GEMM) library. This im2col conversion greatly increases the memory s cs. PF

footprint of the input matrix and reduces data locality.

In this paper we propose a hew approach to MCMK convolution that is based on General Matrix Multiplication (GEMM), References & Citations
but not on im2col. Our algorithm eliminates the need for data replication on the input. By splitting a single call to GEMM * NASAADS

into several smaller calls, we can eliminate date size increases on either the input or output of the convolution layer. We Bookmark what s this?)
have implemented several variants of our algorithm on CPU and GPU processors. On CPU, our algorithm uses much | . "’:'El.'?lff@

less memory than im2col and in most cases is also faster.
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But why a new BLAS Library?

* NVIDIA's cuBLAS is great, oris it?

Cedric Nugteren, TomTom CLBlast: Tuned OpenCL BLAS Slide 10 out of 43
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* NVIDIA's cuBLAS is great, oris it?
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But why a new BLAS Library?

* NVIDIA's cuBLAS is great, oris it?

— Not portable, not customisable, not open-source, ...
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But why a new BLAS Library?

* NVIDIA's cuBLAS is great, oris it?

— Not portable, not customisable, not open-source, ...

ciMathLibraries / cIBLAS

* |s AMD's cIBLAS great?

Code @ lssues 63 Full requests 0 Frojects 0 Wilki

— Not performance portable,
not well engineered,
lack of new features, ...

Filters ~ isissue is:open Labels Miles

@ 63 Open + 93 Closed Author -

@© Mot able to Build ¥IBLAS from Sources

goened 22 e ago by saviogeorge

(0 make rebuilds every file even if no source files were changed
#310 opened on 22 Mar by cirosantilli

(D Leaked eyents in GEMM calls (and probably other functions)
Sl oper®T| 0N 22 Feb by Oblomoy

(D tests go( segmentation fault
#299 opened OTrSSebal iy Lo oot |1

(U Error compiling dpiring run-time
S Sl P - F 016 by amI2a00

(1) ixamax errors
#292 opened on 2 Mov 2016 by mogates3

(R test-short fails gh Ubuntu with AMD Card
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Introducing CLBlast

* CLBlast: Modern C++11 OpenCL BLAS library
* Implements all BLAS routines for all precisions (S, D, C, Z)

* Accelerates all kinds of applications:
— Fluid dynamics, quantum chemistry, linear algebra, etc.

— Today’s focus: deep learning
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Introducing CLBlast

CLBlast: Modern C++11 OpenCL BLAS library
* Implements all BLAS routines for all precisions (S, D, C, Z)

* Accelerates all kinds of applications:
— Fluid dynamics, quantum chemistry, linear algebra, etc.

— Today’s focus: deep learning

Already integrated into various projects:
- JOCLBlast (Java bindings) é;
- ArrayFire (GPU accelerated library and applications) {4}
- OpenCL fork of Caffe (github.com/dividiti/ck-caffe)

- OpenCL fork of TF (github.com/hughperkins/tensorflow-cl) ‘F‘
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Introducing CLBlast

L] CNugteren / CLBlast ©Waich 14 \ ssStar 131 YFork 30

<» Code U lssues 11 i Pulse [i\li Graphs
Tuned OpenCL BLAS community
blas opencl blas-libraries clblas matrix-multiplication gemm gpu
¥ 3 branches T 11 releases 41 8 contributors & Apache-2.0
SN

Branch: development ~ New pull request Find file Clone or download =
This branch is 143 commits ahead, 1 commit behind master. il Pull request [5j Compare
l CNugteren committed on GitHub Merge pull request #148 from CMugteren/benchmarking == Latest commit c973%ed 9 days ago
s cmake Added proper CMake searching for CUDA and cuBLAS 29 days ago
i@ doc Added APl and test infrastructure for the batched GEMM routine 2 months ago
B include Fixed a namespace clash with CUDA FP16 for the half-datatype 15 days ago
m samples treewide: silence type mismatch warnings in “printf(} 3 months ago
il scripts Added an option to the database script to remove tuning results from ... 9 days ago
i src Re-added Titan X {Pascal) tuning results based on more averaging when... 9 days ago

Fixed a compiler warning message 9 days ago
£ .appveyor.yml CI an d Updated AppVeyor script to fix an issue with changes in the latest Ap... 7 months ago
[ .gitignore extens“olmeplli:eerg Inte of the database script. Changed Pandas for the much... 8 months ago
5] travis.yml Aravis.yml: do not build for osx twice, there's no gec there 3 months ago
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But... is it fast? =

* All kernels are generic and tunable thanks to integration of the
CLTune auto-tuner (presented at last year's GTC)
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But... is it fast?

* All kernels are generic and tunable thanks to integration of the
CLTune auto-tuner (presented at last year's GTC)

WGS - 64
WPT - 1
W1
float dtype;

VW ==-1

def” Tloat dtypeV: (reqd work group size(WGS))
~float2 dtypeV; void Xaxpy ( int-n, dtype alpha,

dtypeV* xagm,
dtypeV* ygm) - {
unroll

(Iint w=0; w<WPT; ++w) {

int-i = w¥get global size(0)+get global id(0);
ygm[i] = ygm[i] + alpha * xgm[i];
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But... is it fast?

* All kernels are generic and tunable thanks to integration of the
CLTune auto-tuner (presented at last year's GTC)

WGS - 64
WPT -1
W1

float dtype;
W =1

L (reqd work group size(WGS))
float2 dtypeV; void Xaxpy ( int n, dtype alpha,
dtypeV* xgm,
dtypeV* ygm) - {
unroll
(int w=0; w<WPT; ++w) {
int-i = w¥get global size(0)+get global id(0);
ygn[i]l = ygm[i] + alpha * xgm[i];

* Tuned out-of-the-box for 40 common devices
— For new devices: run the auto-tuner when installing CLBlast
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CLBlast Benchmark Results

AXPY AXPY GEMV
reqular odd reqular
(in GB/s) (in GB/s) (in GB/s)
GEMV GEMM GEMM
odd reqular odd
(in GB/s) (in GFLOPS) (in GFLOPS)

* Higher is better

* More results at http://cnugteren.github.io/clblast
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CLBlast on GeForce GTX/750Ti
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S 70l cIBLAS g 1000r . ciBLAS g 1000F = ciBLAS
£ T T
2 60} © oo} 2 800
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sizes (n=m) - sizes (m=n=k)
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* On-par or better than cIBLAS (especially for GEMM)
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CLBlast on GeForce GTX/750Ti

1800 ||||||||||| | | | | | | |
SGEMM multiples of 128
»-a,-_; 1600t HC|L|3E|’_|§§t
- A C
@ 12000
@ 1000}
B
] 800+
v 600}
o
S 400!
L
O 200
S|zes (m=n )
B o~ F I 0 o«
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~—cIBLAS
1 1200 = cuBLAS
| 1000
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...but not as fast as NVIDIA's cuBLAS
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CLBlast on GeForce GTX/750Ti

1800
1600}
1400}
1200
1000
800
600
400
200

GFLOPS (higher is better)

SGEMM
o—e@ CLBlast

~— CIBLAS
*——a (:lJE3

multiple

s of

128

e ...but not as fast as NVIDIA's cuBLAS
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1600
1400
1200
1000
800
600
400
200

SGEMM
- —e (CLBlast

~—Cc|BLAS
. —— cuBLAS

multiples of 129

Nsight CUDA Device Summary~ Disassembly matrixMul.cu | matri

0x00002ed0
TE:
T73:
T4:
0x00002edB8
= 0x00002edB
0x00002eed
020000228
0x00002e£0
0x00002e£0
0x00002e£4

2

0x00002e£4
0x000022£8
0x00002e£8
0x00002£00
0x00002£00
T5:
TE:
77z
0x0000Z2£08
0x0000Z2£08
0x00002£10
0x00002£10
T8:

T~

S

- Address: _S9matrikhulPE5_5 i

MOV R1, Rl;

[/ Index of the last sub-matrix of & p

int aEnd = aBegin + wA - 1;
[00B83] 1d.param.33z $rld, [ cudap
MVI RO, 0Oxlc;
REZR R1, RO;
MOV RO, g [A1+0x0];
[00284] mowv.33Z %rl5, %rl3;
MOW3Z R1, R1;
[0085] add.=s32 &%rle, %rld, %rls;
IaDD3z RO, RO, RI1;
[008&] subk.s32 %rl7, %rle, 1;
IADD3ZI RE, RO, Oxffffy
[00B7] mowv.33Z2 %rl8, %rl7;

MOW RE, RB;

[/ Btep size used to iterate through t}
int aStep = BLOCE SIZE;

[00B8] mow.33Z2 %rls, 1&;
MVI B3, 0x10;
[00590] mowv.=33Z2 %rZ0, %rlis;
MOW3Z2 B3, RBS;
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CLBlast on Radeon M370X
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CLBlast on Skylake ULT GT2
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* On-par or better than cIBLAS (especially for GEMM)
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CLBlast on Core i5-6200U
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* On-par or better than cIBLAS (especially for AXPY & GEMV)

Cedric Nugteren, TomTom CLBlast: Tuned OpenCL BLAS Slide 26 out of 43



CLBlast for Deep Learning

* What can we do for the deep-learning community?
— Problem-specific tuning
- Half-precision floating-point (FP16)

— Batched routines
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Tuning Only for a Single Size?

* Default GEMM tuning:
- 1024x1024 matrices
* Deep-learning:
- Various but fixed matrix sizes (dependent on network layout)

— Typically smaller and/or rectangular matrices
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Tuning Only for a Single Size?

* Default GEMM tuning:
- 1024x1024 matrices

* Deep-learning:
- Various but fixed matrix sizes (dependent on network layout)
— Typically smaller and/or rectangular matrices

* Potential for optimal performance in CLBlast:

— Tuning for a custom size possible

— C++ API to change parameters at run-time
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Problem-Specific Tuning

Relative SGEMM performance on Radeon M370X

* SGEMM tuning
for Radeon
M370X GPU
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Problem-Specific Tuning

Relative SGEMM performance on Radeon ‘m
110

* SGEMM tuning
for Radeon
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Problem-Specific Tuning

Relative SGEMM performance on Radeon M370X

* SGEMM tuning
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Half-precision floating-point (FP16)

* Double-precision (FP64) not needed for deep-learning

* Even FP32 is too much — introducing half-precision FP16

* Implemented in low-power devices (ARM Mali, Intel GPUs) and
deep-learning specific GPUs (P100)

1210 21 %(0.5+0 to 1023/2048)

.\\1

sign binary point |
| exponent fraction (10 bit)
O o]
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Half-precision floating-point (FP16)

* Double-precision (FP64) not needed for deep-learning
* Even FP32 is too much — introducing half-precision FP16

* Implemented in low-power devices (ARM Mali, Intel GPUs) and
deep-learning specific GPUs (P100)

* Potential for 2x savings in:
bandwidth, storage, compute, energy

L2 M0 2°5x(0.540 to 1023/2048) )
sign binary point
| exponent fraction (10 bit)

(€
Ln
=
c0
5
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Half-precision floating-point (FP16)

* Double-precision (FP64) not needed for deep-learning
* Even FP32 is too much — introducing half-precision FP16

* Implemented in low-power devices (ARM Mali, Intel GPUs) and
deep-learning specific GPUs (P100)

* Potential for 2x savings in:
bandwidth, storage, compute, energy

* Current FP16 support for GPUs:

+ 2% 10 21 x(0.5+0 to 1023/2048)
_ . sign binary point
cuBLAS: HGEMM only [ _exponent fraction (10 bit)

N

— clBLAS: no FP16 at all

— CLBlast: all routines! " 10

\C°
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Half-precision FP16 on Intel Skylake GPU
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* FP16 ~1.8x faster across the board!
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Batching BLAS routines

* Small-sized GEMM is super slow
— Not enough work-groups

— Not enough threads
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Batching BLAS routines

* Small-sized GEMM is super slow
— Not enough work-groups

— Not enough threads

* Let's make it fast again:
— Combine multiple small GEMM operations into a single kernel

— Use offsets to indicate where the next matrices start
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Batched GEMM on GeForce GTX 750Ti

GFLOPS (higher is better)

800

700

600}

500}

400t

300¢

200¢

100}

SGEMMBATCHED m=n=k=128

| e—eCLBlast
»—cIBLAS (non batched)

batch size

* SGEMM 128x128x128:
- Regqular: ~40 GFLOPS
- Batched: ~10 GFLOPS (1 GEMM) up to ~500 GFLOPS (8K)!
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Batched GEMM on GeForce GTX 750Ti
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64 GEMMs -

sizes (M=n=k)

* Significant benefits for larger sizes as well

— mostly beneficial in the range n=64 till 512
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What's next?

More features for deep learning:

- '‘im2col’

- Winograd? FFT?

Input-based auto-tuning using learned models

— Similar to S7150: The ISAAC library

* Integration into OpenCL deep-learning projects

— TensorFlow SYCL? LibDNN?

* Suggestions?
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* HDMap making — Deep-learning

* Deep-learning — Fast BLAS libraries

* More info: S7809 - A Multi-Source, Multi-Sensor Approach to HDMap Creation
- Willem Strijbosch - Head of Autonomous Driving, TomTom

- Today at 10:30 AMin room 210D
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Conclusion

* Introducing CLBlast: a modern C++11 OpenCL BLAS library
* Performance portable thanks to generic kernels and auto-tuning

* Especially targeted at accelerating deep-learning:

— Problem-size specific tuning:
* Up to 2x in an example experiment
— Half-precision FP16 support:

* Up to 2x benefit in speed and memory savings

— Batched GEMM routine:

* Order of magnitude benefit depending on the use-case
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